Cargando…
Suppression of FAM83D Inhibits Glioma Proliferation, Invasion and Migration by Regulating the AKT/mTOR Signaling Pathway
OBJECTIVE: To explore the mechanism by which the family with sequence similarity 83, member D (FAM83D)-mediated AKT/mTOR signaling pathway activation affects the proliferation and metastasis of glioma cells. METHODS: FAM83D protein expression in glioma cells and tissues was detected by western blott...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Neoplasia Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9136185/ https://www.ncbi.nlm.nih.gov/pubmed/35617811 http://dx.doi.org/10.1016/j.tranon.2022.101454 |
_version_ | 1784714122153164800 |
---|---|
author | Li, Xia Sun, Cui Chen, Jing Ma, Ji-Fen Pan, Yi-Heng |
author_facet | Li, Xia Sun, Cui Chen, Jing Ma, Ji-Fen Pan, Yi-Heng |
author_sort | Li, Xia |
collection | PubMed |
description | OBJECTIVE: To explore the mechanism by which the family with sequence similarity 83, member D (FAM83D)-mediated AKT/mTOR signaling pathway activation affects the proliferation and metastasis of glioma cells. METHODS: FAM83D protein expression in glioma cells and tissues was detected by western blotting. Glioma U87 and U251 cells were selected and divided into the Mock, siNC, siFAM83D, FAM83D, MK2206 and FAM83D + MK2206 groups. Cell proliferation was assessed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) and clone formation assays, while invasion and migration were evaluated by Transwell assays and wound healing tests. The protein expression of members of the AKT/mTOR pathway was determined via western blotting. Xenograft models were also established in nude mice to observe the in vivo effect of FAM83D on the growth of glioma. RESULTS: FAM83D was upregulated in glioma patients, especially in those with Stage III-IV. In addition, cells treated with siFAM83D had significant downregulation of p-AKT/AKT and p-mTOR/mTOR, with decreased proliferation and colony numbers, as well as decreased invasion and migration compared to the Mock group. However, FAM83D overexpression could activate the Akt/mTOR pathway and promote the proliferation, invasion and migration of glioma cells. Moreover, treatment with MK2206, an inhibitor of AKT, reversed the promoting effect of FAM83D on the growth of glioma cells. The in vivo experiments demonstrated that silencing FAM83D could inhibit the in vivo growth of glioma cells CONCLUSION: FAM83D was upregulated in glioma and silencing FAM83D suppressed the proliferation, invasion and migration of glioma cells via inhibition of the AKT/mTOR pathway. |
format | Online Article Text |
id | pubmed-9136185 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Neoplasia Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-91361852022-06-04 Suppression of FAM83D Inhibits Glioma Proliferation, Invasion and Migration by Regulating the AKT/mTOR Signaling Pathway Li, Xia Sun, Cui Chen, Jing Ma, Ji-Fen Pan, Yi-Heng Transl Oncol Original Research OBJECTIVE: To explore the mechanism by which the family with sequence similarity 83, member D (FAM83D)-mediated AKT/mTOR signaling pathway activation affects the proliferation and metastasis of glioma cells. METHODS: FAM83D protein expression in glioma cells and tissues was detected by western blotting. Glioma U87 and U251 cells were selected and divided into the Mock, siNC, siFAM83D, FAM83D, MK2206 and FAM83D + MK2206 groups. Cell proliferation was assessed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) and clone formation assays, while invasion and migration were evaluated by Transwell assays and wound healing tests. The protein expression of members of the AKT/mTOR pathway was determined via western blotting. Xenograft models were also established in nude mice to observe the in vivo effect of FAM83D on the growth of glioma. RESULTS: FAM83D was upregulated in glioma patients, especially in those with Stage III-IV. In addition, cells treated with siFAM83D had significant downregulation of p-AKT/AKT and p-mTOR/mTOR, with decreased proliferation and colony numbers, as well as decreased invasion and migration compared to the Mock group. However, FAM83D overexpression could activate the Akt/mTOR pathway and promote the proliferation, invasion and migration of glioma cells. Moreover, treatment with MK2206, an inhibitor of AKT, reversed the promoting effect of FAM83D on the growth of glioma cells. The in vivo experiments demonstrated that silencing FAM83D could inhibit the in vivo growth of glioma cells CONCLUSION: FAM83D was upregulated in glioma and silencing FAM83D suppressed the proliferation, invasion and migration of glioma cells via inhibition of the AKT/mTOR pathway. Neoplasia Press 2022-05-23 /pmc/articles/PMC9136185/ /pubmed/35617811 http://dx.doi.org/10.1016/j.tranon.2022.101454 Text en © 2022 Published by Elsevier Inc. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Li, Xia Sun, Cui Chen, Jing Ma, Ji-Fen Pan, Yi-Heng Suppression of FAM83D Inhibits Glioma Proliferation, Invasion and Migration by Regulating the AKT/mTOR Signaling Pathway |
title | Suppression of FAM83D Inhibits Glioma Proliferation, Invasion and Migration by Regulating the AKT/mTOR Signaling Pathway |
title_full | Suppression of FAM83D Inhibits Glioma Proliferation, Invasion and Migration by Regulating the AKT/mTOR Signaling Pathway |
title_fullStr | Suppression of FAM83D Inhibits Glioma Proliferation, Invasion and Migration by Regulating the AKT/mTOR Signaling Pathway |
title_full_unstemmed | Suppression of FAM83D Inhibits Glioma Proliferation, Invasion and Migration by Regulating the AKT/mTOR Signaling Pathway |
title_short | Suppression of FAM83D Inhibits Glioma Proliferation, Invasion and Migration by Regulating the AKT/mTOR Signaling Pathway |
title_sort | suppression of fam83d inhibits glioma proliferation, invasion and migration by regulating the akt/mtor signaling pathway |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9136185/ https://www.ncbi.nlm.nih.gov/pubmed/35617811 http://dx.doi.org/10.1016/j.tranon.2022.101454 |
work_keys_str_mv | AT lixia suppressionoffam83dinhibitsgliomaproliferationinvasionandmigrationbyregulatingtheaktmtorsignalingpathway AT suncui suppressionoffam83dinhibitsgliomaproliferationinvasionandmigrationbyregulatingtheaktmtorsignalingpathway AT chenjing suppressionoffam83dinhibitsgliomaproliferationinvasionandmigrationbyregulatingtheaktmtorsignalingpathway AT majifen suppressionoffam83dinhibitsgliomaproliferationinvasionandmigrationbyregulatingtheaktmtorsignalingpathway AT panyiheng suppressionoffam83dinhibitsgliomaproliferationinvasionandmigrationbyregulatingtheaktmtorsignalingpathway |