Cargando…

Rare pitfall in the magnetic resonance imaging of status epilepticus

Brain MRI in Status Epilepticus (SE) is often helpful in diagnosis, lateralization and localization of the seizure focus. MRI changes in SE include predominantly ipsilateral diffusion weighted imaging (DWI) changes in the hippocampus and pulvinar or similar changes involving basal ganglia, thalamus,...

Descripción completa

Detalles Bibliográficos
Autores principales: Al-Chalabi, Mustafa, Bajrami, Silvi, Karim, Nurose, Sheikh, Ajaz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9136252/
https://www.ncbi.nlm.nih.gov/pubmed/35647328
http://dx.doi.org/10.1016/j.ensci.2022.100405
Descripción
Sumario:Brain MRI in Status Epilepticus (SE) is often helpful in diagnosis, lateralization and localization of the seizure focus. MRI changes in SE include predominantly ipsilateral diffusion weighted imaging (DWI) changes in the hippocampus and pulvinar or similar changes involving basal ganglia, thalamus, cerebellum, brain stem and external capsule (Chatzikonstantinou et al., 2011 [1]). These changes are thought to be due to transient vasogenic and cytotoxic edema due to either transient damage or breakdown of blood brain barrier, proportional to the frequency and duration of the epileptic activity (Amato et al., 2001 [2]). Such changes may also be reflected on T2- weighted and T2-Fluid-Attenuated Inversion Recovery (FLAIR) sequences of MRI. Herein, we present a case of a transient FLAIR cerebrospinal fluid (CSF) hyperintensity on the second MRI brain in a patient with focal status epilepticus. This imaging finding led to diagnostic confusion and was initially thought to represent subarachnoid hemorrhage. However, lumbar puncture, brain computed tomography (CT), and a follow-up brain MRI ruled out that possibility and other CSF pathologies. We concluded that the transient FLAIR changes in the second brain MRI were related to a rare imaging pitfall caused by Gadolinium enhancement of CSF on the FLAIR sequence, popularly referred to as hyperintense acute reperfusion marker (HARM).