Cargando…

Placental Gene Transcript Proportions are Altered in the Presence of In Utero Arsenic and Cadmium Exposures, Genetic Variants, and Birth Weight Differences

Background: In utero arsenic and cadmium exposures are linked with reduced birth weight as well as alterations in placental molecular features. However, studies thus far have focused on summarizing transcriptional activity at the gene level and do not capture transcript specification, an important r...

Descripción completa

Detalles Bibliográficos
Autores principales: Deyssenroth, Maya A., Peng, Shouneng, Hao, Ke, Marsit, Carmen J., Chen, Jia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9136297/
https://www.ncbi.nlm.nih.gov/pubmed/35646058
http://dx.doi.org/10.3389/fgene.2022.865449
_version_ 1784714148168335360
author Deyssenroth, Maya A.
Peng, Shouneng
Hao, Ke
Marsit, Carmen J.
Chen, Jia
author_facet Deyssenroth, Maya A.
Peng, Shouneng
Hao, Ke
Marsit, Carmen J.
Chen, Jia
author_sort Deyssenroth, Maya A.
collection PubMed
description Background: In utero arsenic and cadmium exposures are linked with reduced birth weight as well as alterations in placental molecular features. However, studies thus far have focused on summarizing transcriptional activity at the gene level and do not capture transcript specification, an important resource during fetal development to enable adaptive responses to the rapidly changing in utero physiological conditions. In this study, we conducted a genome-wide analysis of the placental transcriptome to evaluate the role of differential transcript usage (DTU) as a potential marker of in utero arsenic and cadmium exposure and fetal growth restriction. Methods: Transcriptome-wide RNA sequencing was performed in placenta samples from the Rhode Island Child Health Study (RICHS, n = 199). Arsenic and cadmium levels were measured in maternal toenails using ICP-MS. Differential transcript usage (DTU) contrasting small (SGA) and appropriate (AGA) for gestational age infants as well as above vs. below median exposure to arsenic and cadmium were assessed using the DRIMSeq R package. Genetic variants that influence transcript usage were determined using the sQTLseeker R package. Results: We identified 82 genes demonstrating DTU in association with SGA status at an FDR <0.05. Among these, one gene, ORMDL1, also demonstrated DTU in association with arsenic exposure, and fifteen genes (CSNK1E, GBA, LAMTOR4, MORF4L1, PIGO, PSG1, PSG3, PTMA, RBMS1, SLC38A2, SMAD4, SPCS2, TUBA1B, UBE2A, YIPF5) demonstrated DTU in association with cadmium exposure. In addition to cadmium exposure and SGA status, proportions of the LAMTOR4 transcript ENST00000474141.5 also differed by genetic variants (rs10231604, rs12878, and rs3736591), suggesting a pathway by which an in utero exposure and genetic variants converge to impact fetal growth through perturbations of placental processes. Discussion: We report the first genome-wide characterization of placental transcript usage and associations with intrauterine metal exposure and fetal growth restriction. These results highlight the utility of interrogating the transcriptome at finer-scale transcript-level resolution to identify novel placental biomarkers of exposure-induced outcomes.
format Online
Article
Text
id pubmed-9136297
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-91362972022-05-28 Placental Gene Transcript Proportions are Altered in the Presence of In Utero Arsenic and Cadmium Exposures, Genetic Variants, and Birth Weight Differences Deyssenroth, Maya A. Peng, Shouneng Hao, Ke Marsit, Carmen J. Chen, Jia Front Genet Genetics Background: In utero arsenic and cadmium exposures are linked with reduced birth weight as well as alterations in placental molecular features. However, studies thus far have focused on summarizing transcriptional activity at the gene level and do not capture transcript specification, an important resource during fetal development to enable adaptive responses to the rapidly changing in utero physiological conditions. In this study, we conducted a genome-wide analysis of the placental transcriptome to evaluate the role of differential transcript usage (DTU) as a potential marker of in utero arsenic and cadmium exposure and fetal growth restriction. Methods: Transcriptome-wide RNA sequencing was performed in placenta samples from the Rhode Island Child Health Study (RICHS, n = 199). Arsenic and cadmium levels were measured in maternal toenails using ICP-MS. Differential transcript usage (DTU) contrasting small (SGA) and appropriate (AGA) for gestational age infants as well as above vs. below median exposure to arsenic and cadmium were assessed using the DRIMSeq R package. Genetic variants that influence transcript usage were determined using the sQTLseeker R package. Results: We identified 82 genes demonstrating DTU in association with SGA status at an FDR <0.05. Among these, one gene, ORMDL1, also demonstrated DTU in association with arsenic exposure, and fifteen genes (CSNK1E, GBA, LAMTOR4, MORF4L1, PIGO, PSG1, PSG3, PTMA, RBMS1, SLC38A2, SMAD4, SPCS2, TUBA1B, UBE2A, YIPF5) demonstrated DTU in association with cadmium exposure. In addition to cadmium exposure and SGA status, proportions of the LAMTOR4 transcript ENST00000474141.5 also differed by genetic variants (rs10231604, rs12878, and rs3736591), suggesting a pathway by which an in utero exposure and genetic variants converge to impact fetal growth through perturbations of placental processes. Discussion: We report the first genome-wide characterization of placental transcript usage and associations with intrauterine metal exposure and fetal growth restriction. These results highlight the utility of interrogating the transcriptome at finer-scale transcript-level resolution to identify novel placental biomarkers of exposure-induced outcomes. Frontiers Media S.A. 2022-05-13 /pmc/articles/PMC9136297/ /pubmed/35646058 http://dx.doi.org/10.3389/fgene.2022.865449 Text en Copyright © 2022 Deyssenroth, Peng, Hao, Marsit and Chen. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Genetics
Deyssenroth, Maya A.
Peng, Shouneng
Hao, Ke
Marsit, Carmen J.
Chen, Jia
Placental Gene Transcript Proportions are Altered in the Presence of In Utero Arsenic and Cadmium Exposures, Genetic Variants, and Birth Weight Differences
title Placental Gene Transcript Proportions are Altered in the Presence of In Utero Arsenic and Cadmium Exposures, Genetic Variants, and Birth Weight Differences
title_full Placental Gene Transcript Proportions are Altered in the Presence of In Utero Arsenic and Cadmium Exposures, Genetic Variants, and Birth Weight Differences
title_fullStr Placental Gene Transcript Proportions are Altered in the Presence of In Utero Arsenic and Cadmium Exposures, Genetic Variants, and Birth Weight Differences
title_full_unstemmed Placental Gene Transcript Proportions are Altered in the Presence of In Utero Arsenic and Cadmium Exposures, Genetic Variants, and Birth Weight Differences
title_short Placental Gene Transcript Proportions are Altered in the Presence of In Utero Arsenic and Cadmium Exposures, Genetic Variants, and Birth Weight Differences
title_sort placental gene transcript proportions are altered in the presence of in utero arsenic and cadmium exposures, genetic variants, and birth weight differences
topic Genetics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9136297/
https://www.ncbi.nlm.nih.gov/pubmed/35646058
http://dx.doi.org/10.3389/fgene.2022.865449
work_keys_str_mv AT deyssenrothmayaa placentalgenetranscriptproportionsarealteredinthepresenceofinuteroarsenicandcadmiumexposuresgeneticvariantsandbirthweightdifferences
AT pengshouneng placentalgenetranscriptproportionsarealteredinthepresenceofinuteroarsenicandcadmiumexposuresgeneticvariantsandbirthweightdifferences
AT haoke placentalgenetranscriptproportionsarealteredinthepresenceofinuteroarsenicandcadmiumexposuresgeneticvariantsandbirthweightdifferences
AT marsitcarmenj placentalgenetranscriptproportionsarealteredinthepresenceofinuteroarsenicandcadmiumexposuresgeneticvariantsandbirthweightdifferences
AT chenjia placentalgenetranscriptproportionsarealteredinthepresenceofinuteroarsenicandcadmiumexposuresgeneticvariantsandbirthweightdifferences