Cargando…
A strawman with machine learning for a brain: A response to Biedermann (2022) the strange persistence of (source) “identification” claims in forensic literature
We agree wholeheartedly with Biedermann (2022) FSI Synergy article 100222 in its criticism of research publications that treat forensic inference in source attribution as an “identification” or “individualization” task. We disagree, however, with its criticism of the use of machine learning for fore...
Autores principales: | Morrison, Geoffrey Stewart, Ramos, Daniel, Ypma, Rolf JF, Basu, Nabanita, de Bie, Kim, Enzinger, Ewald, Geradts, Zeno, Meuwly, Didier, van der Vloed, David, Vergeer, Peter, Weber, Philip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9136356/ https://www.ncbi.nlm.nih.gov/pubmed/35647509 http://dx.doi.org/10.1016/j.fsisyn.2022.100230 |
Ejemplares similares
-
The opacity myth: A response to Swofford & Champod (2022)
por: Morrison, Geoffrey Stewart, et al.
Publicado: (2022) -
Interpol review of forensic video analysis, 2019–2022
por: Geradts, Zeno, et al.
Publicado: (2023) -
A. Strawman proton and heavy ion machine
por: Ruggiero, A G
Publicado: (1988) -
Strawman argument characterises critique of Kamin blocking
effect
por: Seraganian, Peter
Publicado: (2022) -
Strawman Optics Design for the LHeC ERL Test Facility
por: Valloni, A, et al.
Publicado: (2013)