Cargando…
Clustering out‐of‐hospital cardiac arrest patients with non‐shockable rhythm by machine learning latent class analysis
AIM: We aimed to identify subphenotypes among patients with out‐of‐hospital cardiac arrest (OHCA) with initial non‐shockable rhythm by applying machine learning latent class analysis and examining the associations between subphenotypes and neurological outcomes. METHODS: This study was a retrospecti...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9136939/ https://www.ncbi.nlm.nih.gov/pubmed/35664809 http://dx.doi.org/10.1002/ams2.760 |