Cargando…

The functional evolution of termite gut microbiota

BACKGROUND: Termites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species but remains largely unknown in other taxa. We intend to fill this gap and provide a gl...

Descripción completa

Detalles Bibliográficos
Autores principales: Arora, Jigyasa, Kinjo, Yukihiro, Šobotník, Jan, Buček, Aleš, Clitheroe, Crystal, Stiblik, Petr, Roisin, Yves, Žifčáková, Lucia, Park, Yung Chul, Kim, Ki Yoon, Sillam-Dussès, David, Hervé, Vincent, Lo, Nathan, Tokuda, Gaku, Brune, Andreas, Bourguignon, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9137090/
https://www.ncbi.nlm.nih.gov/pubmed/35624491
http://dx.doi.org/10.1186/s40168-022-01258-3
_version_ 1784714305004896256
author Arora, Jigyasa
Kinjo, Yukihiro
Šobotník, Jan
Buček, Aleš
Clitheroe, Crystal
Stiblik, Petr
Roisin, Yves
Žifčáková, Lucia
Park, Yung Chul
Kim, Ki Yoon
Sillam-Dussès, David
Hervé, Vincent
Lo, Nathan
Tokuda, Gaku
Brune, Andreas
Bourguignon, Thomas
author_facet Arora, Jigyasa
Kinjo, Yukihiro
Šobotník, Jan
Buček, Aleš
Clitheroe, Crystal
Stiblik, Petr
Roisin, Yves
Žifčáková, Lucia
Park, Yung Chul
Kim, Ki Yoon
Sillam-Dussès, David
Hervé, Vincent
Lo, Nathan
Tokuda, Gaku
Brune, Andreas
Bourguignon, Thomas
author_sort Arora, Jigyasa
collection PubMed
description BACKGROUND: Termites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species but remains largely unknown in other taxa. We intend to fill this gap and provide a global understanding of the functional evolution of termite gut microbiota. RESULTS: We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that essential nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways. CONCLUSIONS: Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ~ 150 million years ago. Therefore, the “world’s smallest bioreactor” has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-022-01258-3.
format Online
Article
Text
id pubmed-9137090
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-91370902022-05-28 The functional evolution of termite gut microbiota Arora, Jigyasa Kinjo, Yukihiro Šobotník, Jan Buček, Aleš Clitheroe, Crystal Stiblik, Petr Roisin, Yves Žifčáková, Lucia Park, Yung Chul Kim, Ki Yoon Sillam-Dussès, David Hervé, Vincent Lo, Nathan Tokuda, Gaku Brune, Andreas Bourguignon, Thomas Microbiome Research BACKGROUND: Termites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species but remains largely unknown in other taxa. We intend to fill this gap and provide a global understanding of the functional evolution of termite gut microbiota. RESULTS: We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that essential nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways. CONCLUSIONS: Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ~ 150 million years ago. Therefore, the “world’s smallest bioreactor” has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-022-01258-3. BioMed Central 2022-05-27 /pmc/articles/PMC9137090/ /pubmed/35624491 http://dx.doi.org/10.1186/s40168-022-01258-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Arora, Jigyasa
Kinjo, Yukihiro
Šobotník, Jan
Buček, Aleš
Clitheroe, Crystal
Stiblik, Petr
Roisin, Yves
Žifčáková, Lucia
Park, Yung Chul
Kim, Ki Yoon
Sillam-Dussès, David
Hervé, Vincent
Lo, Nathan
Tokuda, Gaku
Brune, Andreas
Bourguignon, Thomas
The functional evolution of termite gut microbiota
title The functional evolution of termite gut microbiota
title_full The functional evolution of termite gut microbiota
title_fullStr The functional evolution of termite gut microbiota
title_full_unstemmed The functional evolution of termite gut microbiota
title_short The functional evolution of termite gut microbiota
title_sort functional evolution of termite gut microbiota
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9137090/
https://www.ncbi.nlm.nih.gov/pubmed/35624491
http://dx.doi.org/10.1186/s40168-022-01258-3
work_keys_str_mv AT arorajigyasa thefunctionalevolutionoftermitegutmicrobiota
AT kinjoyukihiro thefunctionalevolutionoftermitegutmicrobiota
AT sobotnikjan thefunctionalevolutionoftermitegutmicrobiota
AT bucekales thefunctionalevolutionoftermitegutmicrobiota
AT clitheroecrystal thefunctionalevolutionoftermitegutmicrobiota
AT stiblikpetr thefunctionalevolutionoftermitegutmicrobiota
AT roisinyves thefunctionalevolutionoftermitegutmicrobiota
AT zifcakovalucia thefunctionalevolutionoftermitegutmicrobiota
AT parkyungchul thefunctionalevolutionoftermitegutmicrobiota
AT kimkiyoon thefunctionalevolutionoftermitegutmicrobiota
AT sillamdussesdavid thefunctionalevolutionoftermitegutmicrobiota
AT hervevincent thefunctionalevolutionoftermitegutmicrobiota
AT lonathan thefunctionalevolutionoftermitegutmicrobiota
AT tokudagaku thefunctionalevolutionoftermitegutmicrobiota
AT bruneandreas thefunctionalevolutionoftermitegutmicrobiota
AT bourguignonthomas thefunctionalevolutionoftermitegutmicrobiota
AT arorajigyasa functionalevolutionoftermitegutmicrobiota
AT kinjoyukihiro functionalevolutionoftermitegutmicrobiota
AT sobotnikjan functionalevolutionoftermitegutmicrobiota
AT bucekales functionalevolutionoftermitegutmicrobiota
AT clitheroecrystal functionalevolutionoftermitegutmicrobiota
AT stiblikpetr functionalevolutionoftermitegutmicrobiota
AT roisinyves functionalevolutionoftermitegutmicrobiota
AT zifcakovalucia functionalevolutionoftermitegutmicrobiota
AT parkyungchul functionalevolutionoftermitegutmicrobiota
AT kimkiyoon functionalevolutionoftermitegutmicrobiota
AT sillamdussesdavid functionalevolutionoftermitegutmicrobiota
AT hervevincent functionalevolutionoftermitegutmicrobiota
AT lonathan functionalevolutionoftermitegutmicrobiota
AT tokudagaku functionalevolutionoftermitegutmicrobiota
AT bruneandreas functionalevolutionoftermitegutmicrobiota
AT bourguignonthomas functionalevolutionoftermitegutmicrobiota