Cargando…
Deep transfer learning to quantify pleural effusion severity in chest X-rays
PURPOSE: The detection of pleural effusion in chest radiography is crucial for doctors to make timely treatment decisions for patients with chronic obstructive pulmonary disease. We used the MIMIC-CXR database to develop a deep learning model to quantify pleural effusion severity in chest radiograph...
Autores principales: | Huang, Tao, Yang, Rui, Shen, Longbin, Feng, Aozi, Li, Li, He, Ningxia, Li, Shuna, Huang, Liying, Lyu, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9137166/ https://www.ncbi.nlm.nih.gov/pubmed/35624426 http://dx.doi.org/10.1186/s12880-022-00827-0 |
Ejemplares similares
-
The Use of Antibiotics for Ventilator-Associated Pneumonia in the MIMIC-IV Database
por: Yang, Rui, et al.
Publicado: (2022) -
Factors Associated With Lymph Node Yield and Effects of Lymph Node Density on Survival of Patients With Pulmonary Sarcomatoid Carcinoma
por: Huang, Liying, et al.
Publicado: (2022) -
Machine learning models for predicting survival in patients with ampullary adenocarcinoma
por: Huang, Tao, et al.
Publicado: (2022) -
The role of hypertension in bone mineral density among males older than 50 years and postmenopausal females: evidence from the US National Health and Nutrition Examination Survey, 2005–2010
por: Li, Shuna, et al.
Publicado: (2023) -
Deep Transfer Learning for the Multilabel Classification of Chest X-ray Images
por: Huang, Guan-Hua, et al.
Publicado: (2022)