Cargando…

Contribution of toll-like receptor 2 and nicotinamide adenine dinucleotide phosphate oxidase to the trimethylamine N-oxide-induced inflammatory reactions in U937-derived macrophages

BACKGROUND: Trimethylamine N-oxide (TMAO) is emerging as a new generation of metabolites related to the activation of inflammatory reactions in the macrophages during atherosclerosis. Stress-activation of cell surface toll-like receptors (TLRs) as well as nicotinamide adenine dinucleotide phosphate...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmadi, Abbas, Vahabzadeh, Zakaria, Moloudi, Mohammadraman, Farhadi, Leila, Shirahmadi, Sara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Isfahan Cardiovascular Research Center, Isfahan University of Medical Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9137230/
https://www.ncbi.nlm.nih.gov/pubmed/35685229
http://dx.doi.org/10.22122/arya.v17i0.2096
Descripción
Sumario:BACKGROUND: Trimethylamine N-oxide (TMAO) is emerging as a new generation of metabolites related to the activation of inflammatory reactions in the macrophages during atherosclerosis. Stress-activation of cell surface toll-like receptors (TLRs) as well as nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) is also assumed to be involved in TMAO-induced inflammatory reaction in the macrophages. To elucidate the possible contribution of TLRs and NOX to the mentioned signaling pathway, we aimed to simultaneously evaluate the expression level of TLR2, TLR6, and NOX2 in TMAO-treated macrophages. METHODS: 2.5 × 106 cells of U937-derived macrophages were treated in triplicates with different concentrations (37.5, 75, 150, and 300 μM) of TMAO for 24 hours. The cells were also treated with tunicamycin (TUN), as a positive control of stress. Normal control group (CTR) cells received no treatment. The viability of treated cells was checked by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole (MTT) assay. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was also used to evaluate the relative expression (fold change) of TLR2, TLR6, and NOX2 at messenger ribonucleic acid (mRNA) levels. One-way analysis of variance (ANOVA) with post-hoc Dunnett’s test was performed to compare every mean with that of the control. RESULTS: No cell death occurred because of treatments. Dose of 300 μM of TMAO significantly increased the relative expression of both TLR2 and NOX2 compared to the CTR cells (P < 0.001 for both). The elevation of TLR6 was not statistically significant in all groups of TMAO-treated cells (P > 0.050). CONCLUSION: Our results provide documentation supporting contribution of TLR2 and NOX2 to previously described inflammatory reactions induced by TMAO in macrophages. In addition, they may clarify the proatherogenic role of TMAO in foam cell formation as well as abnormal activation of macrophages during atherosclerosis.