Cargando…
Fractional Euler numbers and generalized proportional fractional logistic differential equation
We solve a logistic differential equation for generalized proportional Caputo fractional derivative. The solution is found as a fractional power series. The coefficients of that power series are related to the Euler polynomials and Euler numbers as well as to the sequence of Euler’s fractional numbe...
Autor principal: | Nieto, Juan J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9137451/ https://www.ncbi.nlm.nih.gov/pubmed/35669523 http://dx.doi.org/10.1007/s13540-022-00044-0 |
Ejemplares similares
-
Langevin Equations with Generalized Proportional Hadamard–Caputo Fractional Derivative
por: Barakat, M. A., et al.
Publicado: (2021) -
Stability of Gene Regulatory Networks Modeled by Generalized Proportional Caputo Fractional Differential Equations
por: Almeida, Ricardo, et al.
Publicado: (2022) -
A Discretization Approach for the Nonlinear Fractional Logistic Equation
por: Izadi, Mohammad, et al.
Publicado: (2020) -
Fractional differential equation modeling of the HBV infection with time delay and logistic proliferation
por: Sun, Deshun, et al.
Publicado: (2022) -
Dynamics of Space-Fractional Euler–Bernoulli and Timoshenko Beams
por: Stempin, Paulina, et al.
Publicado: (2021)