Cargando…
Molecular Subtyping of Cancer Based on Robust Graph Neural Network and Multi-Omics Data Integration
Accurate molecular subtypes prediction of cancer patients is significant for personalized cancer diagnosis and treatments. Large amount of multi-omics data and the advancement of data-driven methods are expected to facilitate molecular subtyping of cancer. Most existing machine learning–based method...
Autores principales: | Yin, Chaoyi, Cao, Yangkun, Sun, Peishuo, Zhang, Hengyuan, Li, Zhi, Xu, Ying, Sun, Huiyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9137453/ https://www.ncbi.nlm.nih.gov/pubmed/35646077 http://dx.doi.org/10.3389/fgene.2022.884028 |
Ejemplares similares
-
Molecular Subtyping of Cancer Based on Distinguishing Co-Expression Modules and Machine Learning
por: Sun, Peishuo, et al.
Publicado: (2022) -
Identification of Cancer Driver Genes by Integrating Multiomics Data with Graph Neural Networks
por: Song, Hongzhi, et al.
Publicado: (2023) -
MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis
por: Li, Xiao, et al.
Publicado: (2022) -
Multi-omics data integration for hepatocellular carcinoma subtyping with multi-kernel learning
por: Wang, Jiaying, et al.
Publicado: (2022) -
SADLN: Self-attention based deep learning network of integrating multi-omics data for cancer subtype recognition
por: Sun, Qiuwen, et al.
Publicado: (2023)