Cargando…

Polymicrobial Biofilm Dynamics of Multidrug-Resistant Candida albicans and Ampicillin-Resistant Escherichia coli and Antimicrobial Inhibition by Aqueous Garlic Extract

The polymicrobial biofilm of C. albicans with E. coli exhibits a dynamic interspecies interaction and is refractory to conventional antimicrobials. In this study, a high biofilm-forming multidrug-resistant strain of C. albicans overcomes inhibition by E. coli in a 24 h coculture. However, following...

Descripción completa

Detalles Bibliográficos
Autores principales: Ashrit, Priya, Sadanandan, Bindu, Shetty, Kalidas, Vaniyamparambath, Vijayalakshmi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9137478/
https://www.ncbi.nlm.nih.gov/pubmed/35625217
http://dx.doi.org/10.3390/antibiotics11050573
Descripción
Sumario:The polymicrobial biofilm of C. albicans with E. coli exhibits a dynamic interspecies interaction and is refractory to conventional antimicrobials. In this study, a high biofilm-forming multidrug-resistant strain of C. albicans overcomes inhibition by E. coli in a 24 h coculture. However, following treatment with whole Aqueous Garlic Extract (AGE), these individual biofilms of multidrug-resistant C. albicans M-207 and Ampicillin-resistant Escherichia coli ATCC 39936 and their polymicrobial biofilm were prevented, as evidenced by biochemical and structural characterization. This study advances the antimicrobial potential of AGE to inhibit drug-resistant C. albicans and bacterial-associated polymicrobial biofilms, suggesting the potential for effective combinatorial and synergistic antimicrobial designs with minimal side effects.