Cargando…

A Novel Pathway Phenotype of Temporal Lobe Epilepsy and Comorbid Psychiatric Disorders: Results of Precision Nomothetic Medicine

No precision medicine models of temporal lobe epilepsy (TLE) and associated mental comorbidities have been developed to date. This observational study aimed to develop a precision nomothetic, data-driven comorbid TLE model with endophenotype classes and pathway phenotypes that may have prognostic an...

Descripción completa

Detalles Bibliográficos
Autores principales: Maes, Michael, Barbosa, Décio Sabbatini, Almulla, Abbas F., Kanchanatawan, Buranee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9137678/
https://www.ncbi.nlm.nih.gov/pubmed/35624666
http://dx.doi.org/10.3390/antiox11050803
_version_ 1784714437478842368
author Maes, Michael
Barbosa, Décio Sabbatini
Almulla, Abbas F.
Kanchanatawan, Buranee
author_facet Maes, Michael
Barbosa, Décio Sabbatini
Almulla, Abbas F.
Kanchanatawan, Buranee
author_sort Maes, Michael
collection PubMed
description No precision medicine models of temporal lobe epilepsy (TLE) and associated mental comorbidities have been developed to date. This observational study aimed to develop a precision nomothetic, data-driven comorbid TLE model with endophenotype classes and pathway phenotypes that may have prognostic and therapeutical implications. We recruited forty healthy controls and 108 TLE patients for this research and assessed TLE and psychopathology (PP) features as well as oxidative stress (OSTOX, e.g., malondialdehyde or MDA, lipid hydroperoxides, and advanced oxidation protein products) and antioxidant (paraoxonase 1 or PON1 status, -SH groups, and total radical trapping potential or TRAP) biomarkers. A large part (57.2%) of the variance in a latent vector (LV) extracted from the above TLE and PP features was explained by these OSTOX and antioxidant biomarkers. The PON1 Q192R genetic variant showed indirect effects on this LV, which were completely mediated by PON1 activity and MDA. Factor analysis showed that a common core could be extracted from TLE, PP, OSTOX and antioxidant scores, indicating that these features are manifestations of a common underlying construct, i.e., a novel pathway phenotype of TLE. Based on the latter, we constructed a new phenotype class that is characterized by increased severity of TLE, PP and OSTOX features and lowered antioxidant defenses. A large part of the variance in episode frequency was explained by increased MDA, lowered antioxidant, and nitric oxide metabolite levels. In conclusion, (a) PP symptoms belong to the TLE phenome, and the signal increased severity; and (b) cumulative effects of aldehyde formation and lowered antioxidants determine epileptogenic kindling.
format Online
Article
Text
id pubmed-9137678
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91376782022-05-28 A Novel Pathway Phenotype of Temporal Lobe Epilepsy and Comorbid Psychiatric Disorders: Results of Precision Nomothetic Medicine Maes, Michael Barbosa, Décio Sabbatini Almulla, Abbas F. Kanchanatawan, Buranee Antioxidants (Basel) Article No precision medicine models of temporal lobe epilepsy (TLE) and associated mental comorbidities have been developed to date. This observational study aimed to develop a precision nomothetic, data-driven comorbid TLE model with endophenotype classes and pathway phenotypes that may have prognostic and therapeutical implications. We recruited forty healthy controls and 108 TLE patients for this research and assessed TLE and psychopathology (PP) features as well as oxidative stress (OSTOX, e.g., malondialdehyde or MDA, lipid hydroperoxides, and advanced oxidation protein products) and antioxidant (paraoxonase 1 or PON1 status, -SH groups, and total radical trapping potential or TRAP) biomarkers. A large part (57.2%) of the variance in a latent vector (LV) extracted from the above TLE and PP features was explained by these OSTOX and antioxidant biomarkers. The PON1 Q192R genetic variant showed indirect effects on this LV, which were completely mediated by PON1 activity and MDA. Factor analysis showed that a common core could be extracted from TLE, PP, OSTOX and antioxidant scores, indicating that these features are manifestations of a common underlying construct, i.e., a novel pathway phenotype of TLE. Based on the latter, we constructed a new phenotype class that is characterized by increased severity of TLE, PP and OSTOX features and lowered antioxidant defenses. A large part of the variance in episode frequency was explained by increased MDA, lowered antioxidant, and nitric oxide metabolite levels. In conclusion, (a) PP symptoms belong to the TLE phenome, and the signal increased severity; and (b) cumulative effects of aldehyde formation and lowered antioxidants determine epileptogenic kindling. MDPI 2022-04-20 /pmc/articles/PMC9137678/ /pubmed/35624666 http://dx.doi.org/10.3390/antiox11050803 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Maes, Michael
Barbosa, Décio Sabbatini
Almulla, Abbas F.
Kanchanatawan, Buranee
A Novel Pathway Phenotype of Temporal Lobe Epilepsy and Comorbid Psychiatric Disorders: Results of Precision Nomothetic Medicine
title A Novel Pathway Phenotype of Temporal Lobe Epilepsy and Comorbid Psychiatric Disorders: Results of Precision Nomothetic Medicine
title_full A Novel Pathway Phenotype of Temporal Lobe Epilepsy and Comorbid Psychiatric Disorders: Results of Precision Nomothetic Medicine
title_fullStr A Novel Pathway Phenotype of Temporal Lobe Epilepsy and Comorbid Psychiatric Disorders: Results of Precision Nomothetic Medicine
title_full_unstemmed A Novel Pathway Phenotype of Temporal Lobe Epilepsy and Comorbid Psychiatric Disorders: Results of Precision Nomothetic Medicine
title_short A Novel Pathway Phenotype of Temporal Lobe Epilepsy and Comorbid Psychiatric Disorders: Results of Precision Nomothetic Medicine
title_sort novel pathway phenotype of temporal lobe epilepsy and comorbid psychiatric disorders: results of precision nomothetic medicine
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9137678/
https://www.ncbi.nlm.nih.gov/pubmed/35624666
http://dx.doi.org/10.3390/antiox11050803
work_keys_str_mv AT maesmichael anovelpathwayphenotypeoftemporallobeepilepsyandcomorbidpsychiatricdisordersresultsofprecisionnomotheticmedicine
AT barbosadeciosabbatini anovelpathwayphenotypeoftemporallobeepilepsyandcomorbidpsychiatricdisordersresultsofprecisionnomotheticmedicine
AT almullaabbasf anovelpathwayphenotypeoftemporallobeepilepsyandcomorbidpsychiatricdisordersresultsofprecisionnomotheticmedicine
AT kanchanatawanburanee anovelpathwayphenotypeoftemporallobeepilepsyandcomorbidpsychiatricdisordersresultsofprecisionnomotheticmedicine
AT maesmichael novelpathwayphenotypeoftemporallobeepilepsyandcomorbidpsychiatricdisordersresultsofprecisionnomotheticmedicine
AT barbosadeciosabbatini novelpathwayphenotypeoftemporallobeepilepsyandcomorbidpsychiatricdisordersresultsofprecisionnomotheticmedicine
AT almullaabbasf novelpathwayphenotypeoftemporallobeepilepsyandcomorbidpsychiatricdisordersresultsofprecisionnomotheticmedicine
AT kanchanatawanburanee novelpathwayphenotypeoftemporallobeepilepsyandcomorbidpsychiatricdisordersresultsofprecisionnomotheticmedicine