Cargando…
Predicting defects in imbalanced data using resampling methods: an empirical investigation
The development of correct and effective software defect prediction (SDP) models is one of the utmost needs of the software industry. Statistics of many defect-related open-source data sets depict the class imbalance problem in object-oriented projects. Models trained on imbalanced data leads to ina...
Autores principales: | Malhotra, Ruchika, Jain, Juhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9137963/ https://www.ncbi.nlm.nih.gov/pubmed/35634102 http://dx.doi.org/10.7717/peerj-cs.573 |
Ejemplares similares
-
Selective oversampling approach for strongly imbalanced data
por: Gnip, Peter, et al.
Publicado: (2021) -
Too trivial to test? An inverse view on defect prediction to identify methods with low fault risk
por: Niedermayr, Rainer, et al.
Publicado: (2019) -
Empirical mode decomposition using deep learning model for financial market forecasting
por: Jin, Zebin, et al.
Publicado: (2022) -
An empirical Bayes approach to stochastic blockmodels and graphons: shrinkage estimation and model selection
por: Peng, Zhanhao, et al.
Publicado: (2022) -
A combined model for short-term wind speed forecasting based on empirical mode decomposition, feature selection, support vector regression and cross-validated lasso
por: Wang, Tao
Publicado: (2021)