Cargando…
FPGA-based systolic deconvolution architecture for upsampling
A deconvolution accelerator is proposed to upsample n × n input to 2n × 2n output by convolving with a k × k kernel. Its architecture avoids the need for insertion and padding of zeros and thus eliminates the redundant computations to achieve high resource efficiency with reduced number of multiplie...
Autores principales: | Joseph Raj, Alex Noel, Cai, Lianhong, Li, Wei, Zhuang, Zhemin, Tjahjadi, Tardi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138038/ https://www.ncbi.nlm.nih.gov/pubmed/35634123 http://dx.doi.org/10.7717/peerj-cs.973 |
Ejemplares similares
-
AI-Based Estimation of End-Systolic Elastance From Arm-Pressure and Systolic Time Intervals
por: Bikia, Vasiliki, et al.
Publicado: (2021) -
A survey of field programmable gate array (FPGA)-based graph convolutional neural network accelerators: challenges and opportunities
por: Li, Shun, et al.
Publicado: (2022) -
An Explainable Multimodal Neural Network Architecture for Predicting Epilepsy Comorbidities Based on Administrative Claims Data
por: Linden, Thomas, et al.
Publicado: (2021) -
Remarks on Multimodality: Grammatical Interactions in the Parallel Architecture
por: Cohn, Neil, et al.
Publicado: (2022) -
Compact Neural Architecture Designs by Tensor Representations
por: Su, Jiahao, et al.
Publicado: (2022)