Cargando…
RatUNet: residual U-Net based on attention mechanism for image denoising
Deep convolutional neural networks (CNNs) have been very successful in image denoising. However, with the growth of the depth of plain networks, CNNs may result in performance degradation. The lack of network depth leads to the limited ability of the network to extract image features and difficults...
Autores principales: | Zhang, Huibin, Lian, Qiusheng, Zhao, Jianmin, Wang, Yining, Yang, Yuchi, Feng, Suqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138094/ https://www.ncbi.nlm.nih.gov/pubmed/35634105 http://dx.doi.org/10.7717/peerj-cs.970 |
Ejemplares similares
-
Evaluation of MRI Denoising Methods Using Unsupervised Learning
por: Moreno López, Marc, et al.
Publicado: (2021) -
AresB-Net: accurate residual binarized neural networks using shortcut concatenation and shuffled grouped convolution
por: Kim, HyunJin
Publicado: (2021) -
Fully Automated Segmentation of Human Eyeball Using Three-Dimensional U-Net in T2 Magnetic Resonance Imaging
por: Yang, Jin-Ju, et al.
Publicado: (2023) -
SeedSortNet: a rapid and highly effificient lightweight CNN based on visual attention for seed sorting
por: Li, Chunlei, et al.
Publicado: (2021) -
TB-Net: A Tailored, Self-Attention Deep Convolutional Neural Network Design for Detection of Tuberculosis Cases From Chest X-Ray Images
por: Wong, Alexander, et al.
Publicado: (2022)