Cargando…
Design, Spectral Characteristics, Photostability, and Possibilities for Practical Application of BODIPY FL-Labeled Thioterpenoid
This paper presents the design and a comparative analysis of the structural and solvation factors on the spectral and biological properties of the BODIPY biomarker with a thioterpene fragment. Covalent binding of the thioterpene moiety to the butanoic acid residue of meso-substituted BODIPY was carr...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138141/ https://www.ncbi.nlm.nih.gov/pubmed/35621488 http://dx.doi.org/10.3390/bioengineering9050210 |
Sumario: | This paper presents the design and a comparative analysis of the structural and solvation factors on the spectral and biological properties of the BODIPY biomarker with a thioterpene fragment. Covalent binding of the thioterpene moiety to the butanoic acid residue of meso-substituted BODIPY was carried out to find out the membranotropic effect of conjugate to erythrocytes, and to assess the possibilities of its practical application in bioimaging. The molecular structure of the conjugate was confirmed via X-ray, UV/vis-, NMR-, and MS-spectra. It was found that dye demonstrates high photostability and high fluorescence quantum yield (to ~100%) at 514–519 nm. In addition, the marker was shown to effectively penetrate the erythrocytes membrane in the absence of erythrotoxicity. The conjugation of BODIPY with thioterpenoid is an excellent way to increase affinity dyes to biostructures, including blood components. |
---|