Cargando…
The Effect of Nutritional Ketosis on Aquaporin Expression in Apolipoprotein E-Deficient Mice: Potential Implications for Energy Homeostasis
Ketogenic diets (KDs) are very low-carbohydrate, very high-fat diets which promote nutritional ketosis and impact energetic metabolism. Aquaporins (AQPs) are transmembrane channels that facilitate water and glycerol transport across cell membranes and are critical players in energy homeostasis. Alte...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138310/ https://www.ncbi.nlm.nih.gov/pubmed/35625895 http://dx.doi.org/10.3390/biomedicines10051159 |
_version_ | 1784714593261584384 |
---|---|
author | da Silva, Inês V. Gullette, Sean Florindo, Cristina Huang, Neil K. Neuberger, Thomas Ross, A. Catharine Soveral, Graça Castro, Rita |
author_facet | da Silva, Inês V. Gullette, Sean Florindo, Cristina Huang, Neil K. Neuberger, Thomas Ross, A. Catharine Soveral, Graça Castro, Rita |
author_sort | da Silva, Inês V. |
collection | PubMed |
description | Ketogenic diets (KDs) are very low-carbohydrate, very high-fat diets which promote nutritional ketosis and impact energetic metabolism. Aquaporins (AQPs) are transmembrane channels that facilitate water and glycerol transport across cell membranes and are critical players in energy homeostasis. Altered AQP expression or function impacts fat accumulation and related comorbidities, such as the metabolic syndrome. Here, we sought to determine whether nutritional ketosis impacts AQPs expression in the context of an atherogenic model. To do this, we fed ApoE(−/−) (apolipoprotein E-deficient) mice, a model of human atherosclerosis, a KD (Kcal%: 1/81/18, carbohydrate/fat/protein) or a control diet (Kcal%: 70/11/18, carbohydrate/fat/protein) for 12 weeks. Plasma was collected for biochemical analysis. Upon euthanasia, livers, white adipose tissue (WAT), and brown adipose tissue (BAT) were used for gene expression studies. Mice fed the KD and control diets exhibited similar body weights, despite the profoundly different fat contents in the two diets. Moreover, KD-fed mice developed nutritional ketosis and showed increased expression of thermogenic genes in BAT. Additionally, these mice presented an increase in Aqp9 transcripts in BAT, but not in WAT, which suggests the participation of Aqp9 in the influx of excess plasma glycerol to fuel thermogenesis, while the up-regulation of Aqp7 in the liver suggests the involvement of this aquaporin in glycerol influx into hepatocytes. The relationship between nutritional ketosis, energy homeostasis, and the AQP network demands further investigation. |
format | Online Article Text |
id | pubmed-9138310 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91383102022-05-28 The Effect of Nutritional Ketosis on Aquaporin Expression in Apolipoprotein E-Deficient Mice: Potential Implications for Energy Homeostasis da Silva, Inês V. Gullette, Sean Florindo, Cristina Huang, Neil K. Neuberger, Thomas Ross, A. Catharine Soveral, Graça Castro, Rita Biomedicines Brief Report Ketogenic diets (KDs) are very low-carbohydrate, very high-fat diets which promote nutritional ketosis and impact energetic metabolism. Aquaporins (AQPs) are transmembrane channels that facilitate water and glycerol transport across cell membranes and are critical players in energy homeostasis. Altered AQP expression or function impacts fat accumulation and related comorbidities, such as the metabolic syndrome. Here, we sought to determine whether nutritional ketosis impacts AQPs expression in the context of an atherogenic model. To do this, we fed ApoE(−/−) (apolipoprotein E-deficient) mice, a model of human atherosclerosis, a KD (Kcal%: 1/81/18, carbohydrate/fat/protein) or a control diet (Kcal%: 70/11/18, carbohydrate/fat/protein) for 12 weeks. Plasma was collected for biochemical analysis. Upon euthanasia, livers, white adipose tissue (WAT), and brown adipose tissue (BAT) were used for gene expression studies. Mice fed the KD and control diets exhibited similar body weights, despite the profoundly different fat contents in the two diets. Moreover, KD-fed mice developed nutritional ketosis and showed increased expression of thermogenic genes in BAT. Additionally, these mice presented an increase in Aqp9 transcripts in BAT, but not in WAT, which suggests the participation of Aqp9 in the influx of excess plasma glycerol to fuel thermogenesis, while the up-regulation of Aqp7 in the liver suggests the involvement of this aquaporin in glycerol influx into hepatocytes. The relationship between nutritional ketosis, energy homeostasis, and the AQP network demands further investigation. MDPI 2022-05-18 /pmc/articles/PMC9138310/ /pubmed/35625895 http://dx.doi.org/10.3390/biomedicines10051159 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Brief Report da Silva, Inês V. Gullette, Sean Florindo, Cristina Huang, Neil K. Neuberger, Thomas Ross, A. Catharine Soveral, Graça Castro, Rita The Effect of Nutritional Ketosis on Aquaporin Expression in Apolipoprotein E-Deficient Mice: Potential Implications for Energy Homeostasis |
title | The Effect of Nutritional Ketosis on Aquaporin Expression in Apolipoprotein E-Deficient Mice: Potential Implications for Energy Homeostasis |
title_full | The Effect of Nutritional Ketosis on Aquaporin Expression in Apolipoprotein E-Deficient Mice: Potential Implications for Energy Homeostasis |
title_fullStr | The Effect of Nutritional Ketosis on Aquaporin Expression in Apolipoprotein E-Deficient Mice: Potential Implications for Energy Homeostasis |
title_full_unstemmed | The Effect of Nutritional Ketosis on Aquaporin Expression in Apolipoprotein E-Deficient Mice: Potential Implications for Energy Homeostasis |
title_short | The Effect of Nutritional Ketosis on Aquaporin Expression in Apolipoprotein E-Deficient Mice: Potential Implications for Energy Homeostasis |
title_sort | effect of nutritional ketosis on aquaporin expression in apolipoprotein e-deficient mice: potential implications for energy homeostasis |
topic | Brief Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138310/ https://www.ncbi.nlm.nih.gov/pubmed/35625895 http://dx.doi.org/10.3390/biomedicines10051159 |
work_keys_str_mv | AT dasilvainesv theeffectofnutritionalketosisonaquaporinexpressioninapolipoproteinedeficientmicepotentialimplicationsforenergyhomeostasis AT gullettesean theeffectofnutritionalketosisonaquaporinexpressioninapolipoproteinedeficientmicepotentialimplicationsforenergyhomeostasis AT florindocristina theeffectofnutritionalketosisonaquaporinexpressioninapolipoproteinedeficientmicepotentialimplicationsforenergyhomeostasis AT huangneilk theeffectofnutritionalketosisonaquaporinexpressioninapolipoproteinedeficientmicepotentialimplicationsforenergyhomeostasis AT neubergerthomas theeffectofnutritionalketosisonaquaporinexpressioninapolipoproteinedeficientmicepotentialimplicationsforenergyhomeostasis AT rossacatharine theeffectofnutritionalketosisonaquaporinexpressioninapolipoproteinedeficientmicepotentialimplicationsforenergyhomeostasis AT soveralgraca theeffectofnutritionalketosisonaquaporinexpressioninapolipoproteinedeficientmicepotentialimplicationsforenergyhomeostasis AT castrorita theeffectofnutritionalketosisonaquaporinexpressioninapolipoproteinedeficientmicepotentialimplicationsforenergyhomeostasis AT dasilvainesv effectofnutritionalketosisonaquaporinexpressioninapolipoproteinedeficientmicepotentialimplicationsforenergyhomeostasis AT gullettesean effectofnutritionalketosisonaquaporinexpressioninapolipoproteinedeficientmicepotentialimplicationsforenergyhomeostasis AT florindocristina effectofnutritionalketosisonaquaporinexpressioninapolipoproteinedeficientmicepotentialimplicationsforenergyhomeostasis AT huangneilk effectofnutritionalketosisonaquaporinexpressioninapolipoproteinedeficientmicepotentialimplicationsforenergyhomeostasis AT neubergerthomas effectofnutritionalketosisonaquaporinexpressioninapolipoproteinedeficientmicepotentialimplicationsforenergyhomeostasis AT rossacatharine effectofnutritionalketosisonaquaporinexpressioninapolipoproteinedeficientmicepotentialimplicationsforenergyhomeostasis AT soveralgraca effectofnutritionalketosisonaquaporinexpressioninapolipoproteinedeficientmicepotentialimplicationsforenergyhomeostasis AT castrorita effectofnutritionalketosisonaquaporinexpressioninapolipoproteinedeficientmicepotentialimplicationsforenergyhomeostasis |