Cargando…
Temporal and Locational Values of Images Affecting the Deep Learning of Cancer Stem Cell Morphology
Deep learning is being increasingly applied for obtaining digital microscopy image data of cells. Well-defined annotated cell images have contributed to the development of the technology. Cell morphology is an inherent characteristic of each cell type. Moreover, the morphology of a cell changes duri...
Autores principales: | Hanai, Yumi, Ishihata, Hiroaki, Zhang, Zaijun, Maruyama, Ryuto, Kasai, Tomonari, Kameda, Hiroyuki, Sugiyama, Tomoyasu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138469/ https://www.ncbi.nlm.nih.gov/pubmed/35625678 http://dx.doi.org/10.3390/biomedicines10050941 |
Ejemplares similares
-
Deep Learning of Phase-Contrast Images of Cancer Stem Cells Using a Selected Dataset of High Accuracy Value Using Conditional Generative Adversarial Networks
por: Zhang, Zaijun, et al.
Publicado: (2023) -
Deep Learning of Cancer Stem Cell Morphology Using Conditional Generative Adversarial Networks
por: Aida, Saori, et al.
Publicado: (2020) -
Prognostic value of morphological characteristics assessed by CT scan in patients with non‐small cell lung cancer treated with nivolumab
por: Minemura, Hiroyuki, et al.
Publicado: (2020) -
Is Chronic Kidney Disease Affecting the Postoperative Complications of Vitrectomy for Proliferative Diabetic Retinopathy?
por: Kameda, Yusuke, et al.
Publicado: (2021) -
Spatio-Temporal Disparity and Driving Forces of the Supply Level of Healthcare Service in the Yangtze River Delta
por: Li, Zaijun, et al.
Publicado: (2022)