Cargando…
Lyso-IP: Uncovering Pathogenic Mechanisms of Lysosomal Dysfunction
Lysosomes are ubiquitous membrane-bound organelles found in all eukaryotic cells. Outside of their well-known degradative function, lysosomes are integral in maintaining cellular homeostasis. Growing evidence has shown that lysosomal dysfunction plays an important role not only in the rare group of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138597/ https://www.ncbi.nlm.nih.gov/pubmed/35625544 http://dx.doi.org/10.3390/biom12050616 |
Sumario: | Lysosomes are ubiquitous membrane-bound organelles found in all eukaryotic cells. Outside of their well-known degradative function, lysosomes are integral in maintaining cellular homeostasis. Growing evidence has shown that lysosomal dysfunction plays an important role not only in the rare group of lysosomal storage diseases but also in a host of others, including common neurodegenerative disorders, such as Alzheimer disease and Parkinson disease. New technological advances have significantly increased our ability to rapidly isolate lysosomes from cells in recent years. The development of the Lyso-IP approach and similar methods now allow for lysosomal purification within ten minutes. Multiple studies using the Lyso-IP approach have revealed novel insights into the pathogenic mechanisms of lysosomal disorders, including Niemann-Pick type C disease, showing the immense potential for this technique. Future applications of rapid lysosomal isolation techniques are likely to greatly enhance our understanding of lysosomal dysfunction in rare and common neurodegeneration causes. |
---|