Cargando…
Automated Endocardial Border Detection and Left Ventricular Functional Assessment in Echocardiography Using Deep Learning
Endocardial border detection is a key step in assessing left ventricular systolic function in echocardiography. However, this process is still not sufficiently accurate, and manual retracing is often required, causing time-consuming and intra-/inter-observer variability in clinical practice. To addr...
Autores principales: | Ono, Shunzaburo, Komatsu, Masaaki, Sakai, Akira, Arima, Hideki, Ochida, Mie, Aoyama, Rina, Yasutomi, Suguru, Asada, Ken, Kaneko, Syuzo, Sasano, Tetsuo, Hamamoto, Ryuji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138644/ https://www.ncbi.nlm.nih.gov/pubmed/35625819 http://dx.doi.org/10.3390/biomedicines10051082 |
Ejemplares similares
-
Towards Clinical Application of Artificial Intelligence in Ultrasound Imaging
por: Komatsu, Masaaki, et al.
Publicado: (2021) -
Medical Professional Enhancement Using Explainable Artificial Intelligence in Fetal Cardiac Ultrasound Screening
por: Sakai, Akira, et al.
Publicado: (2022) -
Epigenetics Analysis and Integrated Analysis of Multiomics Data, Including Epigenetic Data, Using Artificial Intelligence in the Era of Precision Medicine
por: Hamamoto, Ryuji, et al.
Publicado: (2019) -
Image Segmentation of the Ventricular Septum in Fetal Cardiac Ultrasound Videos Based on Deep Learning Using Time-Series Information
por: Dozen, Ai, et al.
Publicado: (2020) -
Model-Agnostic Method for Thoracic Wall Segmentation in Fetal Ultrasound Videos
por: Shozu, Kanto, et al.
Publicado: (2020)