Cargando…
SMMDA: Predicting miRNA-Disease Associations by Incorporating Multiple Similarity Profiles and a Novel Disease Representation
SIMPLE SUMMARY: Predicting possible associations between miRNAs and diseases would provide new perspectives on disease diagnosis, pathogenesis, and gene therapy. In this work, considering the limited accessibility, high time consumption and high cost in traditional biological researches, we presente...
Autores principales: | Ji, Bo-Ya, Pan, Liang-Rui, Zhou, Ji-Ren, You, Zhu-Hong, Peng, Shao-Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138858/ https://www.ncbi.nlm.nih.gov/pubmed/35625505 http://dx.doi.org/10.3390/biology11050777 |
Ejemplares similares
-
DRMDA: deep representations‐based miRNA–disease association prediction
por: Chen, Xing, et al.
Publicado: (2017) -
Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model
por: Ji, Bo-Ya, et al.
Publicado: (2020) -
Uncover miRNA-Disease Association by Exploiting Global Network Similarity
por: Chen, Min, et al.
Publicado: (2016) -
Comparative analysis of similarity measurements in miRNAs with applications to miRNA-disease association predictions
por: Chen, Hailin, et al.
Publicado: (2020) -
MDSCMF: Matrix Decomposition and Similarity-Constrained Matrix Factorization for miRNA–Disease Association Prediction
por: Ni, Jiancheng, et al.
Publicado: (2022)