Cargando…
The Use of Machine Learning Algorithms and the Mass Spectrometry Lipidomic Profile of Serum for the Evaluation of Tacrolimus Exposure and Toxicity in Kidney Transplant Recipients
Tacrolimus has a narrow therapeutic window; a whole-blood trough target concentration of between 5 and 8 ng/mL is considered a safe level for stable kidney transplant recipients. Tacrolimus serum levels must be closely monitored to obtain a balance between maximizing efficacy and minimizing dose-rel...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138871/ https://www.ncbi.nlm.nih.gov/pubmed/35625894 http://dx.doi.org/10.3390/biomedicines10051157 |
_version_ | 1784714726308052992 |
---|---|
author | Burghelea, Dan Moisoiu, Tudor Ivan, Cristina Elec, Alina Munteanu, Adriana Iancu, Ștefania D. Truta, Anamaria Kacso, Teodor Paul Antal, Oana Socaciu, Carmen Elec, Florin Ioan Kacso, Ina Maria |
author_facet | Burghelea, Dan Moisoiu, Tudor Ivan, Cristina Elec, Alina Munteanu, Adriana Iancu, Ștefania D. Truta, Anamaria Kacso, Teodor Paul Antal, Oana Socaciu, Carmen Elec, Florin Ioan Kacso, Ina Maria |
author_sort | Burghelea, Dan |
collection | PubMed |
description | Tacrolimus has a narrow therapeutic window; a whole-blood trough target concentration of between 5 and 8 ng/mL is considered a safe level for stable kidney transplant recipients. Tacrolimus serum levels must be closely monitored to obtain a balance between maximizing efficacy and minimizing dose-related toxic effects. Currently, there is no specific tacrolimus toxicity biomarker except a graft biopsy. Our study aimed to identify specific serum metabolites correlated with tacrolinemia levels using serum high-precision liquid chromatography–mass spectrometry and standard laboratory evaluation. Three machine learning algorithms were used (Naïve Bayes, logistic regression, and Random Forest) in 19 patients with high tacrolinemia (8 ng/mL) and 23 patients with low tacrolinemia (5 ng/mL). Using a selected panel of five lipid metabolites (phosphatidylserine, phosphatidylglycerol, phosphatidylethanolamine, arachidyl palmitoleate, and ceramide), Mg(2+), and uric acid, all three machine learning algorithms yielded excellent classification accuracies between the two groups. The highest classification accuracy was obtained by Naïve Bayes, with an area under the curve of 0.799 and a classification accuracy of 0.756. Our results show that using our identified five lipid metabolites combined with Mg(2+) and uric acid serum levels may provide a novel tool for diagnosing tacrolimus toxicity in kidney transplant recipients. Further validation with targeted MS and biopsy-proven TAC toxicity is needed. |
format | Online Article Text |
id | pubmed-9138871 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91388712022-05-28 The Use of Machine Learning Algorithms and the Mass Spectrometry Lipidomic Profile of Serum for the Evaluation of Tacrolimus Exposure and Toxicity in Kidney Transplant Recipients Burghelea, Dan Moisoiu, Tudor Ivan, Cristina Elec, Alina Munteanu, Adriana Iancu, Ștefania D. Truta, Anamaria Kacso, Teodor Paul Antal, Oana Socaciu, Carmen Elec, Florin Ioan Kacso, Ina Maria Biomedicines Article Tacrolimus has a narrow therapeutic window; a whole-blood trough target concentration of between 5 and 8 ng/mL is considered a safe level for stable kidney transplant recipients. Tacrolimus serum levels must be closely monitored to obtain a balance between maximizing efficacy and minimizing dose-related toxic effects. Currently, there is no specific tacrolimus toxicity biomarker except a graft biopsy. Our study aimed to identify specific serum metabolites correlated with tacrolinemia levels using serum high-precision liquid chromatography–mass spectrometry and standard laboratory evaluation. Three machine learning algorithms were used (Naïve Bayes, logistic regression, and Random Forest) in 19 patients with high tacrolinemia (8 ng/mL) and 23 patients with low tacrolinemia (5 ng/mL). Using a selected panel of five lipid metabolites (phosphatidylserine, phosphatidylglycerol, phosphatidylethanolamine, arachidyl palmitoleate, and ceramide), Mg(2+), and uric acid, all three machine learning algorithms yielded excellent classification accuracies between the two groups. The highest classification accuracy was obtained by Naïve Bayes, with an area under the curve of 0.799 and a classification accuracy of 0.756. Our results show that using our identified five lipid metabolites combined with Mg(2+) and uric acid serum levels may provide a novel tool for diagnosing tacrolimus toxicity in kidney transplant recipients. Further validation with targeted MS and biopsy-proven TAC toxicity is needed. MDPI 2022-05-17 /pmc/articles/PMC9138871/ /pubmed/35625894 http://dx.doi.org/10.3390/biomedicines10051157 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Burghelea, Dan Moisoiu, Tudor Ivan, Cristina Elec, Alina Munteanu, Adriana Iancu, Ștefania D. Truta, Anamaria Kacso, Teodor Paul Antal, Oana Socaciu, Carmen Elec, Florin Ioan Kacso, Ina Maria The Use of Machine Learning Algorithms and the Mass Spectrometry Lipidomic Profile of Serum for the Evaluation of Tacrolimus Exposure and Toxicity in Kidney Transplant Recipients |
title | The Use of Machine Learning Algorithms and the Mass Spectrometry Lipidomic Profile of Serum for the Evaluation of Tacrolimus Exposure and Toxicity in Kidney Transplant Recipients |
title_full | The Use of Machine Learning Algorithms and the Mass Spectrometry Lipidomic Profile of Serum for the Evaluation of Tacrolimus Exposure and Toxicity in Kidney Transplant Recipients |
title_fullStr | The Use of Machine Learning Algorithms and the Mass Spectrometry Lipidomic Profile of Serum for the Evaluation of Tacrolimus Exposure and Toxicity in Kidney Transplant Recipients |
title_full_unstemmed | The Use of Machine Learning Algorithms and the Mass Spectrometry Lipidomic Profile of Serum for the Evaluation of Tacrolimus Exposure and Toxicity in Kidney Transplant Recipients |
title_short | The Use of Machine Learning Algorithms and the Mass Spectrometry Lipidomic Profile of Serum for the Evaluation of Tacrolimus Exposure and Toxicity in Kidney Transplant Recipients |
title_sort | use of machine learning algorithms and the mass spectrometry lipidomic profile of serum for the evaluation of tacrolimus exposure and toxicity in kidney transplant recipients |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138871/ https://www.ncbi.nlm.nih.gov/pubmed/35625894 http://dx.doi.org/10.3390/biomedicines10051157 |
work_keys_str_mv | AT burgheleadan theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT moisoiutudor theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT ivancristina theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT elecalina theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT munteanuadriana theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT iancustefaniad theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT trutaanamaria theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT kacsoteodorpaul theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT antaloana theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT socaciucarmen theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT elecflorinioan theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT kacsoinamaria theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT burgheleadan useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT moisoiutudor useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT ivancristina useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT elecalina useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT munteanuadriana useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT iancustefaniad useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT trutaanamaria useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT kacsoteodorpaul useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT antaloana useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT socaciucarmen useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT elecflorinioan useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients AT kacsoinamaria useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients |