Cargando…

The Use of Machine Learning Algorithms and the Mass Spectrometry Lipidomic Profile of Serum for the Evaluation of Tacrolimus Exposure and Toxicity in Kidney Transplant Recipients

Tacrolimus has a narrow therapeutic window; a whole-blood trough target concentration of between 5 and 8 ng/mL is considered a safe level for stable kidney transplant recipients. Tacrolimus serum levels must be closely monitored to obtain a balance between maximizing efficacy and minimizing dose-rel...

Descripción completa

Detalles Bibliográficos
Autores principales: Burghelea, Dan, Moisoiu, Tudor, Ivan, Cristina, Elec, Alina, Munteanu, Adriana, Iancu, Ștefania D., Truta, Anamaria, Kacso, Teodor Paul, Antal, Oana, Socaciu, Carmen, Elec, Florin Ioan, Kacso, Ina Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138871/
https://www.ncbi.nlm.nih.gov/pubmed/35625894
http://dx.doi.org/10.3390/biomedicines10051157
_version_ 1784714726308052992
author Burghelea, Dan
Moisoiu, Tudor
Ivan, Cristina
Elec, Alina
Munteanu, Adriana
Iancu, Ștefania D.
Truta, Anamaria
Kacso, Teodor Paul
Antal, Oana
Socaciu, Carmen
Elec, Florin Ioan
Kacso, Ina Maria
author_facet Burghelea, Dan
Moisoiu, Tudor
Ivan, Cristina
Elec, Alina
Munteanu, Adriana
Iancu, Ștefania D.
Truta, Anamaria
Kacso, Teodor Paul
Antal, Oana
Socaciu, Carmen
Elec, Florin Ioan
Kacso, Ina Maria
author_sort Burghelea, Dan
collection PubMed
description Tacrolimus has a narrow therapeutic window; a whole-blood trough target concentration of between 5 and 8 ng/mL is considered a safe level for stable kidney transplant recipients. Tacrolimus serum levels must be closely monitored to obtain a balance between maximizing efficacy and minimizing dose-related toxic effects. Currently, there is no specific tacrolimus toxicity biomarker except a graft biopsy. Our study aimed to identify specific serum metabolites correlated with tacrolinemia levels using serum high-precision liquid chromatography–mass spectrometry and standard laboratory evaluation. Three machine learning algorithms were used (Naïve Bayes, logistic regression, and Random Forest) in 19 patients with high tacrolinemia (8 ng/mL) and 23 patients with low tacrolinemia (5 ng/mL). Using a selected panel of five lipid metabolites (phosphatidylserine, phosphatidylglycerol, phosphatidylethanolamine, arachidyl palmitoleate, and ceramide), Mg(2+), and uric acid, all three machine learning algorithms yielded excellent classification accuracies between the two groups. The highest classification accuracy was obtained by Naïve Bayes, with an area under the curve of 0.799 and a classification accuracy of 0.756. Our results show that using our identified five lipid metabolites combined with Mg(2+) and uric acid serum levels may provide a novel tool for diagnosing tacrolimus toxicity in kidney transplant recipients. Further validation with targeted MS and biopsy-proven TAC toxicity is needed.
format Online
Article
Text
id pubmed-9138871
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91388712022-05-28 The Use of Machine Learning Algorithms and the Mass Spectrometry Lipidomic Profile of Serum for the Evaluation of Tacrolimus Exposure and Toxicity in Kidney Transplant Recipients Burghelea, Dan Moisoiu, Tudor Ivan, Cristina Elec, Alina Munteanu, Adriana Iancu, Ștefania D. Truta, Anamaria Kacso, Teodor Paul Antal, Oana Socaciu, Carmen Elec, Florin Ioan Kacso, Ina Maria Biomedicines Article Tacrolimus has a narrow therapeutic window; a whole-blood trough target concentration of between 5 and 8 ng/mL is considered a safe level for stable kidney transplant recipients. Tacrolimus serum levels must be closely monitored to obtain a balance between maximizing efficacy and minimizing dose-related toxic effects. Currently, there is no specific tacrolimus toxicity biomarker except a graft biopsy. Our study aimed to identify specific serum metabolites correlated with tacrolinemia levels using serum high-precision liquid chromatography–mass spectrometry and standard laboratory evaluation. Three machine learning algorithms were used (Naïve Bayes, logistic regression, and Random Forest) in 19 patients with high tacrolinemia (8 ng/mL) and 23 patients with low tacrolinemia (5 ng/mL). Using a selected panel of five lipid metabolites (phosphatidylserine, phosphatidylglycerol, phosphatidylethanolamine, arachidyl palmitoleate, and ceramide), Mg(2+), and uric acid, all three machine learning algorithms yielded excellent classification accuracies between the two groups. The highest classification accuracy was obtained by Naïve Bayes, with an area under the curve of 0.799 and a classification accuracy of 0.756. Our results show that using our identified five lipid metabolites combined with Mg(2+) and uric acid serum levels may provide a novel tool for diagnosing tacrolimus toxicity in kidney transplant recipients. Further validation with targeted MS and biopsy-proven TAC toxicity is needed. MDPI 2022-05-17 /pmc/articles/PMC9138871/ /pubmed/35625894 http://dx.doi.org/10.3390/biomedicines10051157 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Burghelea, Dan
Moisoiu, Tudor
Ivan, Cristina
Elec, Alina
Munteanu, Adriana
Iancu, Ștefania D.
Truta, Anamaria
Kacso, Teodor Paul
Antal, Oana
Socaciu, Carmen
Elec, Florin Ioan
Kacso, Ina Maria
The Use of Machine Learning Algorithms and the Mass Spectrometry Lipidomic Profile of Serum for the Evaluation of Tacrolimus Exposure and Toxicity in Kidney Transplant Recipients
title The Use of Machine Learning Algorithms and the Mass Spectrometry Lipidomic Profile of Serum for the Evaluation of Tacrolimus Exposure and Toxicity in Kidney Transplant Recipients
title_full The Use of Machine Learning Algorithms and the Mass Spectrometry Lipidomic Profile of Serum for the Evaluation of Tacrolimus Exposure and Toxicity in Kidney Transplant Recipients
title_fullStr The Use of Machine Learning Algorithms and the Mass Spectrometry Lipidomic Profile of Serum for the Evaluation of Tacrolimus Exposure and Toxicity in Kidney Transplant Recipients
title_full_unstemmed The Use of Machine Learning Algorithms and the Mass Spectrometry Lipidomic Profile of Serum for the Evaluation of Tacrolimus Exposure and Toxicity in Kidney Transplant Recipients
title_short The Use of Machine Learning Algorithms and the Mass Spectrometry Lipidomic Profile of Serum for the Evaluation of Tacrolimus Exposure and Toxicity in Kidney Transplant Recipients
title_sort use of machine learning algorithms and the mass spectrometry lipidomic profile of serum for the evaluation of tacrolimus exposure and toxicity in kidney transplant recipients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138871/
https://www.ncbi.nlm.nih.gov/pubmed/35625894
http://dx.doi.org/10.3390/biomedicines10051157
work_keys_str_mv AT burgheleadan theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT moisoiutudor theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT ivancristina theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT elecalina theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT munteanuadriana theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT iancustefaniad theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT trutaanamaria theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT kacsoteodorpaul theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT antaloana theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT socaciucarmen theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT elecflorinioan theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT kacsoinamaria theuseofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT burgheleadan useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT moisoiutudor useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT ivancristina useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT elecalina useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT munteanuadriana useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT iancustefaniad useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT trutaanamaria useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT kacsoteodorpaul useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT antaloana useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT socaciucarmen useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT elecflorinioan useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients
AT kacsoinamaria useofmachinelearningalgorithmsandthemassspectrometrylipidomicprofileofserumfortheevaluationoftacrolimusexposureandtoxicityinkidneytransplantrecipients