Cargando…

Hibernation with Rhythmicity in the Retina, Brain, and Plasma but Not in the Liver of Hibernating Giant Spiny Frogs (Quasipaa spinosa)

SIMPLE SUMMARY: Aquatic ectotherms experience hypoxia under water during hibernation, which enables them to move denoting some level of consciousness, unlike terrestrial hibernators. However, how aquatic ectotherms modulate their clocks and clock-controlled genes in different tissues and plasma mela...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Zhigang, Ahmad, Ibrahim M., Zuo, Lirong, Wang, Hui, Li, Dongming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138901/
https://www.ncbi.nlm.nih.gov/pubmed/35625450
http://dx.doi.org/10.3390/biology11050722
_version_ 1784714733299957760
author Xie, Zhigang
Ahmad, Ibrahim M.
Zuo, Lirong
Wang, Hui
Li, Dongming
author_facet Xie, Zhigang
Ahmad, Ibrahim M.
Zuo, Lirong
Wang, Hui
Li, Dongming
author_sort Xie, Zhigang
collection PubMed
description SIMPLE SUMMARY: Aquatic ectotherms experience hypoxia under water during hibernation, which enables them to move denoting some level of consciousness, unlike terrestrial hibernators. However, how aquatic ectotherms modulate their clocks and clock-controlled genes in different tissues and plasma melatonin and corticosterone in light-dark cycles under natural environments before and during hibernation, remains to be largely unexplored. To achieve these, in this study, we investigated circadian clock genes, circadian clock-controlled genes, antioxidant enzyme genes, and related hormones in giant spiny frog (Quasipaa spinosa). Our results demonstrated that, despite the hypometabolic state of hibernation, the retina and the brain displayed some circadian rhythms of clock and antioxidant genes, as well as melatonin, while the liver was inactive. These novel findings may contribute to an understanding of how aquatic ectotherms use their circadian system differentially to modulate their physiology in escaping hypoxia during hibernation and preparing for arousal. ABSTRACT: Hibernation in ectotherms is well known, however, it is unclear how the circadian clock regulates endocrine and antioxidative defense systems of aquatic hibernators. Using the giant spiny frog (Quasipaa spinosa), we studied mRNA expression levels of (1) circadian core clock (Bmal1, Clock, Cry1 and Per2), clock-controlled (Ror-α, Mel-1c and AANAT), and antioxidant enzyme (AOE) (SOD1, SOD2, CAT and GPx) genes in retina, brain, and liver; and (2) plasma melatonin (MT) and corticosterone (CORT) levels, over a 24-hour period at six intervals pre-hibernation and during hibernation. Our results showed that brain Bmal1, Cry1, Per2 and Mel-1c were rhythmic pre-hibernation and Clock and Ror-α during hibernation. However, the retina Bmal1, Clock and Mel-1c, and plasma MT became rhythmic during hibernation. All brain AOEs (SOD1, SOD2, CAT and GPx) were rhythmic pre-hibernation and became non-rhythmic but upregulated, except SOD1, during hibernation. However, plasma CORT and liver clocks and AOEs were non-rhythmic in both periods. The mRNA expression levels of AOEs closely resembled those of Ror-α but not plasma MT oscillations. In the hibernating aquatic frogs, these modulations of melatonin, as well as clock and clock-controlled genes and AOEs might be fundamental for them to remain relatively inactive, increase tolerance, and escape hypoxia, and to prepare for arousal.
format Online
Article
Text
id pubmed-9138901
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91389012022-05-28 Hibernation with Rhythmicity in the Retina, Brain, and Plasma but Not in the Liver of Hibernating Giant Spiny Frogs (Quasipaa spinosa) Xie, Zhigang Ahmad, Ibrahim M. Zuo, Lirong Wang, Hui Li, Dongming Biology (Basel) Article SIMPLE SUMMARY: Aquatic ectotherms experience hypoxia under water during hibernation, which enables them to move denoting some level of consciousness, unlike terrestrial hibernators. However, how aquatic ectotherms modulate their clocks and clock-controlled genes in different tissues and plasma melatonin and corticosterone in light-dark cycles under natural environments before and during hibernation, remains to be largely unexplored. To achieve these, in this study, we investigated circadian clock genes, circadian clock-controlled genes, antioxidant enzyme genes, and related hormones in giant spiny frog (Quasipaa spinosa). Our results demonstrated that, despite the hypometabolic state of hibernation, the retina and the brain displayed some circadian rhythms of clock and antioxidant genes, as well as melatonin, while the liver was inactive. These novel findings may contribute to an understanding of how aquatic ectotherms use their circadian system differentially to modulate their physiology in escaping hypoxia during hibernation and preparing for arousal. ABSTRACT: Hibernation in ectotherms is well known, however, it is unclear how the circadian clock regulates endocrine and antioxidative defense systems of aquatic hibernators. Using the giant spiny frog (Quasipaa spinosa), we studied mRNA expression levels of (1) circadian core clock (Bmal1, Clock, Cry1 and Per2), clock-controlled (Ror-α, Mel-1c and AANAT), and antioxidant enzyme (AOE) (SOD1, SOD2, CAT and GPx) genes in retina, brain, and liver; and (2) plasma melatonin (MT) and corticosterone (CORT) levels, over a 24-hour period at six intervals pre-hibernation and during hibernation. Our results showed that brain Bmal1, Cry1, Per2 and Mel-1c were rhythmic pre-hibernation and Clock and Ror-α during hibernation. However, the retina Bmal1, Clock and Mel-1c, and plasma MT became rhythmic during hibernation. All brain AOEs (SOD1, SOD2, CAT and GPx) were rhythmic pre-hibernation and became non-rhythmic but upregulated, except SOD1, during hibernation. However, plasma CORT and liver clocks and AOEs were non-rhythmic in both periods. The mRNA expression levels of AOEs closely resembled those of Ror-α but not plasma MT oscillations. In the hibernating aquatic frogs, these modulations of melatonin, as well as clock and clock-controlled genes and AOEs might be fundamental for them to remain relatively inactive, increase tolerance, and escape hypoxia, and to prepare for arousal. MDPI 2022-05-09 /pmc/articles/PMC9138901/ /pubmed/35625450 http://dx.doi.org/10.3390/biology11050722 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Xie, Zhigang
Ahmad, Ibrahim M.
Zuo, Lirong
Wang, Hui
Li, Dongming
Hibernation with Rhythmicity in the Retina, Brain, and Plasma but Not in the Liver of Hibernating Giant Spiny Frogs (Quasipaa spinosa)
title Hibernation with Rhythmicity in the Retina, Brain, and Plasma but Not in the Liver of Hibernating Giant Spiny Frogs (Quasipaa spinosa)
title_full Hibernation with Rhythmicity in the Retina, Brain, and Plasma but Not in the Liver of Hibernating Giant Spiny Frogs (Quasipaa spinosa)
title_fullStr Hibernation with Rhythmicity in the Retina, Brain, and Plasma but Not in the Liver of Hibernating Giant Spiny Frogs (Quasipaa spinosa)
title_full_unstemmed Hibernation with Rhythmicity in the Retina, Brain, and Plasma but Not in the Liver of Hibernating Giant Spiny Frogs (Quasipaa spinosa)
title_short Hibernation with Rhythmicity in the Retina, Brain, and Plasma but Not in the Liver of Hibernating Giant Spiny Frogs (Quasipaa spinosa)
title_sort hibernation with rhythmicity in the retina, brain, and plasma but not in the liver of hibernating giant spiny frogs (quasipaa spinosa)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138901/
https://www.ncbi.nlm.nih.gov/pubmed/35625450
http://dx.doi.org/10.3390/biology11050722
work_keys_str_mv AT xiezhigang hibernationwithrhythmicityintheretinabrainandplasmabutnotintheliverofhibernatinggiantspinyfrogsquasipaaspinosa
AT ahmadibrahimm hibernationwithrhythmicityintheretinabrainandplasmabutnotintheliverofhibernatinggiantspinyfrogsquasipaaspinosa
AT zuolirong hibernationwithrhythmicityintheretinabrainandplasmabutnotintheliverofhibernatinggiantspinyfrogsquasipaaspinosa
AT wanghui hibernationwithrhythmicityintheretinabrainandplasmabutnotintheliverofhibernatinggiantspinyfrogsquasipaaspinosa
AT lidongming hibernationwithrhythmicityintheretinabrainandplasmabutnotintheliverofhibernatinggiantspinyfrogsquasipaaspinosa