Cargando…
Assessment of MicroRNAs Associated with Tumor Purity by Random Forest Regression
SIMPLE SUMMARY: Cancer is a disease with high mortality and recurrence rates. To understand cancer biology, it is important to accurately determine the proportion of tumor and non-tumor cells in tumor tissues. In this study, the proportion of tumor cells in tumor tissues was predicted using miRNA ex...
Autores principales: | Nam, Dong-Yeon, Rhee, Je-Keun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138977/ https://www.ncbi.nlm.nih.gov/pubmed/35625515 http://dx.doi.org/10.3390/biology11050787 |
Ejemplares similares
-
RF_Purify: a novel tool for comprehensive analysis of tumor-purity in methylation array data based on random forest regression
por: Johann, Pascal David, et al.
Publicado: (2019) -
MicroRNAs in Brain Cancer: Look at the Forest, Not at the Tree
por: Peruzzi, Pierpaolo, et al.
Publicado: (2019) -
MicroRNAs in endocrine tumors
por: Butz, Henriett, et al.
Publicado: (2019) -
miRWoods: Enhanced precursor detection and stacked random forests for the sensitive detection of microRNAs
por: Bell, Jimmy, et al.
Publicado: (2019) -
Testing for Differentially-Expressed MicroRNAs with Errors-in-Variables Nonparametric Regression
por: Wang, Bin, et al.
Publicado: (2012)