Cargando…
Shell Disorder Models Detect That Omicron Has Harder Shells with Attenuation but Is Not a Descendant of the Wuhan-Hu-1 SARS-CoV-2
Before the SARS-CoV-2 Omicron variant emergence, shell disorder models (SDM) suggested that an attenuated precursor from pangolins may have entered humans in 2017 or earlier. This was based on a shell disorder analysis of SARS-CoV-1/2 and pangolin-Cov-2017. The SDM suggests that Omicron is attenuate...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139003/ https://www.ncbi.nlm.nih.gov/pubmed/35625559 http://dx.doi.org/10.3390/biom12050631 |
_version_ | 1784714757969805312 |
---|---|
author | Goh, Gerard Kian-Meng Dunker, A. Keith Foster, James A. Uversky, Vladimir N. |
author_facet | Goh, Gerard Kian-Meng Dunker, A. Keith Foster, James A. Uversky, Vladimir N. |
author_sort | Goh, Gerard Kian-Meng |
collection | PubMed |
description | Before the SARS-CoV-2 Omicron variant emergence, shell disorder models (SDM) suggested that an attenuated precursor from pangolins may have entered humans in 2017 or earlier. This was based on a shell disorder analysis of SARS-CoV-1/2 and pangolin-Cov-2017. The SDM suggests that Omicron is attenuated with almost identical N (inner shell) disorder as pangolin-CoV-2017 (N-PID (percentage of intrinsic disorder): 44.8% vs. 44.9%—lower than other variants). The outer shell disorder (M-PID) of Omicron is lower than that of other variants and pangolin-CoV-2017 (5.4% vs. 5.9%). COVID-19-related CoVs have the lowest M-PIDs (hardest outer shell) among all CoVs. This is likely to be responsible for the higher contagiousness of SARS-CoV-2 and Omicron, since hard outer shell protects the virion from salivary/mucosal antimicrobial enzymes. Phylogenetic study using M reveals that Omicron branched off from an ancestor of the Wuhan-Hu-1 strain closely related to pangolin-CoVs. M, being evolutionarily conserved in COVID-19, is most ideal for COVID-19 phylogenetic study. Omicron may have been hiding among burrowing animals (e.g., pangolins) that provide optimal evolutionary environments for attenuation and increase shell hardness, which is essential for fecal–oral–respiratory transmission via buried feces. Incoming data support SDM e.g., the presence of fewer infectious particles in the lungs than in the bronchi upon infection. |
format | Online Article Text |
id | pubmed-9139003 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91390032022-05-28 Shell Disorder Models Detect That Omicron Has Harder Shells with Attenuation but Is Not a Descendant of the Wuhan-Hu-1 SARS-CoV-2 Goh, Gerard Kian-Meng Dunker, A. Keith Foster, James A. Uversky, Vladimir N. Biomolecules Article Before the SARS-CoV-2 Omicron variant emergence, shell disorder models (SDM) suggested that an attenuated precursor from pangolins may have entered humans in 2017 or earlier. This was based on a shell disorder analysis of SARS-CoV-1/2 and pangolin-Cov-2017. The SDM suggests that Omicron is attenuated with almost identical N (inner shell) disorder as pangolin-CoV-2017 (N-PID (percentage of intrinsic disorder): 44.8% vs. 44.9%—lower than other variants). The outer shell disorder (M-PID) of Omicron is lower than that of other variants and pangolin-CoV-2017 (5.4% vs. 5.9%). COVID-19-related CoVs have the lowest M-PIDs (hardest outer shell) among all CoVs. This is likely to be responsible for the higher contagiousness of SARS-CoV-2 and Omicron, since hard outer shell protects the virion from salivary/mucosal antimicrobial enzymes. Phylogenetic study using M reveals that Omicron branched off from an ancestor of the Wuhan-Hu-1 strain closely related to pangolin-CoVs. M, being evolutionarily conserved in COVID-19, is most ideal for COVID-19 phylogenetic study. Omicron may have been hiding among burrowing animals (e.g., pangolins) that provide optimal evolutionary environments for attenuation and increase shell hardness, which is essential for fecal–oral–respiratory transmission via buried feces. Incoming data support SDM e.g., the presence of fewer infectious particles in the lungs than in the bronchi upon infection. MDPI 2022-04-25 /pmc/articles/PMC9139003/ /pubmed/35625559 http://dx.doi.org/10.3390/biom12050631 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Goh, Gerard Kian-Meng Dunker, A. Keith Foster, James A. Uversky, Vladimir N. Shell Disorder Models Detect That Omicron Has Harder Shells with Attenuation but Is Not a Descendant of the Wuhan-Hu-1 SARS-CoV-2 |
title | Shell Disorder Models Detect That Omicron Has Harder Shells with Attenuation but Is Not a Descendant of the Wuhan-Hu-1 SARS-CoV-2 |
title_full | Shell Disorder Models Detect That Omicron Has Harder Shells with Attenuation but Is Not a Descendant of the Wuhan-Hu-1 SARS-CoV-2 |
title_fullStr | Shell Disorder Models Detect That Omicron Has Harder Shells with Attenuation but Is Not a Descendant of the Wuhan-Hu-1 SARS-CoV-2 |
title_full_unstemmed | Shell Disorder Models Detect That Omicron Has Harder Shells with Attenuation but Is Not a Descendant of the Wuhan-Hu-1 SARS-CoV-2 |
title_short | Shell Disorder Models Detect That Omicron Has Harder Shells with Attenuation but Is Not a Descendant of the Wuhan-Hu-1 SARS-CoV-2 |
title_sort | shell disorder models detect that omicron has harder shells with attenuation but is not a descendant of the wuhan-hu-1 sars-cov-2 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139003/ https://www.ncbi.nlm.nih.gov/pubmed/35625559 http://dx.doi.org/10.3390/biom12050631 |
work_keys_str_mv | AT gohgerardkianmeng shelldisordermodelsdetectthatomicronhashardershellswithattenuationbutisnotadescendantofthewuhanhu1sarscov2 AT dunkerakeith shelldisordermodelsdetectthatomicronhashardershellswithattenuationbutisnotadescendantofthewuhanhu1sarscov2 AT fosterjamesa shelldisordermodelsdetectthatomicronhashardershellswithattenuationbutisnotadescendantofthewuhanhu1sarscov2 AT uverskyvladimirn shelldisordermodelsdetectthatomicronhashardershellswithattenuationbutisnotadescendantofthewuhanhu1sarscov2 |