Cargando…

Characterization and In Vitro Cytotoxicity Safety Screening of Fractionated Organosolv Lignin on Diverse Primary Human Cell Types Commonly Used in Tissue Engineering

SIMPLE SUMMARY: As global efforts to use eco-friendly and reusable materials increase, the use of lignin from waste biomass will continue to intensify. Lignin is an underutilized biowaste macromolecule that is gaining considerable interest in biomedical research. However, the source of lignin and th...

Descripción completa

Detalles Bibliográficos
Autores principales: Menima-Medzogo, Jules A., Walz, Kathrin, Lauer, Jasmin C., Sivasankarapillai, Gopakumar, Gleuwitz, F. Robert, Rolauffs, Bernd, Laborie, Marie-Pierre, Hart, Melanie L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139013/
https://www.ncbi.nlm.nih.gov/pubmed/35625424
http://dx.doi.org/10.3390/biology11050696
Descripción
Sumario:SIMPLE SUMMARY: As global efforts to use eco-friendly and reusable materials increase, the use of lignin from waste biomass will continue to intensify. Lignin is an underutilized biowaste macromolecule that is gaining considerable interest in biomedical research. However, the source of lignin and the extraction process heavily influence its chemistry, which can influence a cell’s reaction to lignin. Organosolv lignin is extracted via an eco-friendly process from leftover waste material. Few studies have tested the biocompatibility of organosolv lignins with human cells. We extensively characterized fractionated organosolv lignin and performed in vitro cytotoxicity safety screening on diverse primary human cell types commonly used in tissue engineering. This is the first study to show that, at a balanced concentration, fractionated low MW beechwood-derived organosolv lignin is non-cytotoxic to highly relevant human cell types used in tissue engineering including human bone marrow-derived mesenchymal stromal cells (MSCs), chondrocytes, osteoblasts, periodontal ligament fibroblasts, gingival fibroblasts and keratinocytes. Additionally, we show that organosolv lignin can be used to fabricate cell scaffolds and that addition of lignin increased the stiffness and viscosity of the scaffolds as well as cell attachment. This suggests that organosolv lignin may be used in the generation of tissue-like biomaterial-based constructs for tissue repair. ABSTRACT: There is limited data assessing the cytotoxic effects of organosolv lignin with cells commonly used in tissue engineering. Structural and physico-chemical characterization of fractionated organosolv lignin showed that a decrease of the molecular weight (MW) is accompanied by a less branched conformation of the phenolic biopolymer (higher S/G ratio) and an increased number of aliphatic hydroxyl functionalities. Enabling stronger polymer−solvent interactions, as proven by the Hansen solubility parameter analysis, low MW organosolv lignin (2543 g/mol) is considered to be compatible with common biomaterials. Using low MW lignin, high cell viability (70–100%) was achieved after 2 h, 24 h and 7 days using the following lignin concentrations: MSCs and osteoblasts (0.02 mg/mL), gingival fibroblasts and keratinocytes (0.02 to 0.04 mg/mL), periodontal ligament fibroblasts and chondrocytes (0.02 to 0.08 mg/mL). Cell viability was reduced at higher concentrations, indicating that high concentrations are cytotoxic. Higher cell viability was attained using 30/70 (w/v) NaOH vs. 40/60 (w/v) EtOH as the initial lignin solvent. Hydrogels containing low MW lignin (0.02 to 0.3 mg/mL) in agarose dose-dependently increased chondrocyte attachment (cell viability 84–100%) and hydrogel viscosity and stiffness to 3–11 kPa, similar to the pericellular matrix of chondrocytes. This suggests that low MW organosolv lignin may be used in many tissue engineering fields.