Cargando…

Lowering the Sampling Rate: Heart Rate Response during Cognitive Fatigue

Cognitive fatigue is a mental state characterised by feelings of tiredness and impaired cognitive functioning due to sustained cognitive demands. Frequency-domain heart rate variability (HRV) features have been found to vary as a function of cognitive fatigue. However, it has yet to be determined wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Kar Fye Alvin, Chan, Elliot, Car, Josip, Gan, Woon-Seng, Christopoulos, Georgios
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139121/
https://www.ncbi.nlm.nih.gov/pubmed/35624616
http://dx.doi.org/10.3390/bios12050315
Descripción
Sumario:Cognitive fatigue is a mental state characterised by feelings of tiredness and impaired cognitive functioning due to sustained cognitive demands. Frequency-domain heart rate variability (HRV) features have been found to vary as a function of cognitive fatigue. However, it has yet to be determined whether HRV features derived from electrocardiogram data with a low sampling rate would remain sensitive to cognitive fatigue. Bridging this research gap is important as it has substantial implications for designing more energy-efficient and less memory-hungry wearables to monitor cognitive fatigue. This study aimed to examine (1) the level of agreement between frequency-domain HRV features derived from lower and higher sampling rates, and (2) whether frequency-domain HRV features derived from lower sampling rates could predict cognitive fatigue. Participants (N = 53) were put through a cognitively fatiguing 2-back task for 20 min whilst their electrocardiograms were recorded. Results revealed that frequency-domain HRV features derived from sampling rate as low as 125 Hz remained almost perfectly in agreement with features derived from the original sampling rate at 2000 Hz. Furthermore, frequency domain features, such as normalised low-frequency power, normalised high-frequency power, and the ratio of low- to high-frequency power varied as a function of increasing cognitive fatigue during the task across all sampling rates. In conclusion, it appears that sampling at 125 Hz is more than adequate for frequency-domain feature extraction to index cognitive fatigue. These findings have significant implications for the design of low-cost wearables for detecting cognitive fatigue.