Cargando…
Early Detection of Diabetic Peripheral Neuropathy by fMRI: An Evidence-Based Review
With the significant rise in the prevalence of diabetes worldwide, diabetic peripheral neuropathy (DPN) remains the most common complication among type 1 and 2 diabetics. The adverse sequelae of DPN, which include neuropathic pain, diabetic foot ulcers and lower-limb amputations, significantly impac...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139132/ https://www.ncbi.nlm.nih.gov/pubmed/35624944 http://dx.doi.org/10.3390/brainsci12050557 |
_version_ | 1784714787449470976 |
---|---|
author | Chitneni, Ahish Rupp, Adam Ghorayeb, Joe Abd-Elsayed, Alaa |
author_facet | Chitneni, Ahish Rupp, Adam Ghorayeb, Joe Abd-Elsayed, Alaa |
author_sort | Chitneni, Ahish |
collection | PubMed |
description | With the significant rise in the prevalence of diabetes worldwide, diabetic peripheral neuropathy (DPN) remains the most common complication among type 1 and 2 diabetics. The adverse sequelae of DPN, which include neuropathic pain, diabetic foot ulcers and lower-limb amputations, significantly impact quality of life and are major contributors to the biopsychosocial and economic burden of diabetes at the individual, societal and health system levels. Because DPN is often diagnosed in the late stages of disease progression by electromyography (EMG), and neuropathic pain as a result of DPN is difficult to treat, the need for earlier detection is crucial to better ascertain and manage the condition. Among the various modalities available to aid in the early detection of DPN, functional magnetic resonance imaging (fMRI) has emerged as a practical tool in DPN imaging due to its noninvasive radiation-free nature and its ability to relate real-time functional changes reflecting the local oxygen consumption of regions of the CNS due to external stimuli. This review aims to summarize the current body of knowledge regarding the utility of fMRI in detecting DPN by observing central nervous system (CNS) activity changes among individuals with DPN when compared to controls. The evidence to date points toward a tendency for increased activity in various central neuroanatomical structures that can be detected by fMRI and positively correlates with diabetic neuropathic pain. |
format | Online Article Text |
id | pubmed-9139132 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91391322022-05-28 Early Detection of Diabetic Peripheral Neuropathy by fMRI: An Evidence-Based Review Chitneni, Ahish Rupp, Adam Ghorayeb, Joe Abd-Elsayed, Alaa Brain Sci Perspective With the significant rise in the prevalence of diabetes worldwide, diabetic peripheral neuropathy (DPN) remains the most common complication among type 1 and 2 diabetics. The adverse sequelae of DPN, which include neuropathic pain, diabetic foot ulcers and lower-limb amputations, significantly impact quality of life and are major contributors to the biopsychosocial and economic burden of diabetes at the individual, societal and health system levels. Because DPN is often diagnosed in the late stages of disease progression by electromyography (EMG), and neuropathic pain as a result of DPN is difficult to treat, the need for earlier detection is crucial to better ascertain and manage the condition. Among the various modalities available to aid in the early detection of DPN, functional magnetic resonance imaging (fMRI) has emerged as a practical tool in DPN imaging due to its noninvasive radiation-free nature and its ability to relate real-time functional changes reflecting the local oxygen consumption of regions of the CNS due to external stimuli. This review aims to summarize the current body of knowledge regarding the utility of fMRI in detecting DPN by observing central nervous system (CNS) activity changes among individuals with DPN when compared to controls. The evidence to date points toward a tendency for increased activity in various central neuroanatomical structures that can be detected by fMRI and positively correlates with diabetic neuropathic pain. MDPI 2022-04-26 /pmc/articles/PMC9139132/ /pubmed/35624944 http://dx.doi.org/10.3390/brainsci12050557 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Perspective Chitneni, Ahish Rupp, Adam Ghorayeb, Joe Abd-Elsayed, Alaa Early Detection of Diabetic Peripheral Neuropathy by fMRI: An Evidence-Based Review |
title | Early Detection of Diabetic Peripheral Neuropathy by fMRI: An Evidence-Based Review |
title_full | Early Detection of Diabetic Peripheral Neuropathy by fMRI: An Evidence-Based Review |
title_fullStr | Early Detection of Diabetic Peripheral Neuropathy by fMRI: An Evidence-Based Review |
title_full_unstemmed | Early Detection of Diabetic Peripheral Neuropathy by fMRI: An Evidence-Based Review |
title_short | Early Detection of Diabetic Peripheral Neuropathy by fMRI: An Evidence-Based Review |
title_sort | early detection of diabetic peripheral neuropathy by fmri: an evidence-based review |
topic | Perspective |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139132/ https://www.ncbi.nlm.nih.gov/pubmed/35624944 http://dx.doi.org/10.3390/brainsci12050557 |
work_keys_str_mv | AT chitneniahish earlydetectionofdiabeticperipheralneuropathybyfmrianevidencebasedreview AT ruppadam earlydetectionofdiabeticperipheralneuropathybyfmrianevidencebasedreview AT ghorayebjoe earlydetectionofdiabeticperipheralneuropathybyfmrianevidencebasedreview AT abdelsayedalaa earlydetectionofdiabeticperipheralneuropathybyfmrianevidencebasedreview |