Cargando…
Comparative Transcriptome Analysis Reveals Candidate Genes and Pathways for Potential Branch Growth in Elm (Ulmus pumila) Cultivars
SIMPLE SUMMARY: Elm (Ulmus pumila) is a strong essential wood, and it is widely used in cabinets, sculptures, and ship making. In the present study, phenotypic and comparative transcriptomic analyses were performed in elm fast- (UGu17 and UZuantian) and slow-growing cultivars (U81-07 and U82-39). Ph...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139171/ https://www.ncbi.nlm.nih.gov/pubmed/35625439 http://dx.doi.org/10.3390/biology11050711 |
_version_ | 1784714796831080448 |
---|---|
author | Zhang, Luoyan Xie, Shaoqiu Yang, Cheng Cao, Dongling Fan, Shoujin Zhang, Xuejie |
author_facet | Zhang, Luoyan Xie, Shaoqiu Yang, Cheng Cao, Dongling Fan, Shoujin Zhang, Xuejie |
author_sort | Zhang, Luoyan |
collection | PubMed |
description | SIMPLE SUMMARY: Elm (Ulmus pumila) is a strong essential wood, and it is widely used in cabinets, sculptures, and ship making. In the present study, phenotypic and comparative transcriptomic analyses were performed in elm fast- (UGu17 and UZuantian) and slow-growing cultivars (U81-07 and U82-39). Phenotypic observation showed that the thickness of secondary xylem of 2-year-old fast-growing branches was greater compared with slow-growing cultivars. Comparative transcriptome analysis predicted that many pathways were involved in vascular development and transcriptional regulation in elm, such as “plant-type secondary cell wall biogenesis”, “cell wall thickening”, and “phenylpropanoid biosynthesis”. NAC domain transcriptional factors (TFs) and their master regulators, cellulose synthase catalytic subunits (CESAs), xylan synthesis, and secondary wall thickness were presumed to function in the thickening mechanism of elm branches. Our results indicated that the general phenylpropanoid pathway and lignin metabolism had vital functions in the growth of elm branches. ABSTRACT: Wood plays a vital role in human life. It is important to study the thickening mechanism of tree branches and explore the mechanism of wood formation. Elm (Ulmus pumila) is a strong essential wood, and it is widely used in cabinets, sculptures, and ship making. In the present study, phenotypic and comparative transcriptomic analyses were performed in U. pumila fast- (UGu17 and UZuantian) and slow-growing cultivars (U81-07 and U82-39). Phenotypic observation showed that the thickness of secondary xylem of 2-year-old fast-growing branches was greater compared with slow-growing cultivars. A total of 9367 (up = 4363, down = 5004), 7159 (3413/3746), 7436 (3566/3870), and 5707 (2719/2988) differentially expressed genes (DEGs) were identified between fast- and slow-growing cultivars. Moreover, GO and KEGG enrichment analyses predicted that many pathways were involved in vascular development and transcriptional regulation in elm, such as “plant-type secondary cell wall biogenesis”, “cell wall thickening”, and “phenylpropanoid biosynthesis”. NAC domain transcriptional factors (TFs) and their master regulators (VND1/MYB26), cellulose synthase catalytic subunits (CESAs) (such as IRX5/IRX3/IRX1), xylan synthesis, and secondary wall thickness (such as IRX9/IRX10/IRX8) were supposed to function in the thickening mechanism of elm branches. Our results indicated that the general phenylpropanoid pathway (such as PAL/C4H/4CL) and lignin metabolism (such as HCL/CSE/CCoAOMT/CCR/F5H) had vital functions in the growth of elm branches. Our transcriptome data were consistent with molecular results for branch thickening in elm cultivars. |
format | Online Article Text |
id | pubmed-9139171 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91391712022-05-28 Comparative Transcriptome Analysis Reveals Candidate Genes and Pathways for Potential Branch Growth in Elm (Ulmus pumila) Cultivars Zhang, Luoyan Xie, Shaoqiu Yang, Cheng Cao, Dongling Fan, Shoujin Zhang, Xuejie Biology (Basel) Article SIMPLE SUMMARY: Elm (Ulmus pumila) is a strong essential wood, and it is widely used in cabinets, sculptures, and ship making. In the present study, phenotypic and comparative transcriptomic analyses were performed in elm fast- (UGu17 and UZuantian) and slow-growing cultivars (U81-07 and U82-39). Phenotypic observation showed that the thickness of secondary xylem of 2-year-old fast-growing branches was greater compared with slow-growing cultivars. Comparative transcriptome analysis predicted that many pathways were involved in vascular development and transcriptional regulation in elm, such as “plant-type secondary cell wall biogenesis”, “cell wall thickening”, and “phenylpropanoid biosynthesis”. NAC domain transcriptional factors (TFs) and their master regulators, cellulose synthase catalytic subunits (CESAs), xylan synthesis, and secondary wall thickness were presumed to function in the thickening mechanism of elm branches. Our results indicated that the general phenylpropanoid pathway and lignin metabolism had vital functions in the growth of elm branches. ABSTRACT: Wood plays a vital role in human life. It is important to study the thickening mechanism of tree branches and explore the mechanism of wood formation. Elm (Ulmus pumila) is a strong essential wood, and it is widely used in cabinets, sculptures, and ship making. In the present study, phenotypic and comparative transcriptomic analyses were performed in U. pumila fast- (UGu17 and UZuantian) and slow-growing cultivars (U81-07 and U82-39). Phenotypic observation showed that the thickness of secondary xylem of 2-year-old fast-growing branches was greater compared with slow-growing cultivars. A total of 9367 (up = 4363, down = 5004), 7159 (3413/3746), 7436 (3566/3870), and 5707 (2719/2988) differentially expressed genes (DEGs) were identified between fast- and slow-growing cultivars. Moreover, GO and KEGG enrichment analyses predicted that many pathways were involved in vascular development and transcriptional regulation in elm, such as “plant-type secondary cell wall biogenesis”, “cell wall thickening”, and “phenylpropanoid biosynthesis”. NAC domain transcriptional factors (TFs) and their master regulators (VND1/MYB26), cellulose synthase catalytic subunits (CESAs) (such as IRX5/IRX3/IRX1), xylan synthesis, and secondary wall thickness (such as IRX9/IRX10/IRX8) were supposed to function in the thickening mechanism of elm branches. Our results indicated that the general phenylpropanoid pathway (such as PAL/C4H/4CL) and lignin metabolism (such as HCL/CSE/CCoAOMT/CCR/F5H) had vital functions in the growth of elm branches. Our transcriptome data were consistent with molecular results for branch thickening in elm cultivars. MDPI 2022-05-06 /pmc/articles/PMC9139171/ /pubmed/35625439 http://dx.doi.org/10.3390/biology11050711 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Luoyan Xie, Shaoqiu Yang, Cheng Cao, Dongling Fan, Shoujin Zhang, Xuejie Comparative Transcriptome Analysis Reveals Candidate Genes and Pathways for Potential Branch Growth in Elm (Ulmus pumila) Cultivars |
title | Comparative Transcriptome Analysis Reveals Candidate Genes and Pathways for Potential Branch Growth in Elm (Ulmus pumila) Cultivars |
title_full | Comparative Transcriptome Analysis Reveals Candidate Genes and Pathways for Potential Branch Growth in Elm (Ulmus pumila) Cultivars |
title_fullStr | Comparative Transcriptome Analysis Reveals Candidate Genes and Pathways for Potential Branch Growth in Elm (Ulmus pumila) Cultivars |
title_full_unstemmed | Comparative Transcriptome Analysis Reveals Candidate Genes and Pathways for Potential Branch Growth in Elm (Ulmus pumila) Cultivars |
title_short | Comparative Transcriptome Analysis Reveals Candidate Genes and Pathways for Potential Branch Growth in Elm (Ulmus pumila) Cultivars |
title_sort | comparative transcriptome analysis reveals candidate genes and pathways for potential branch growth in elm (ulmus pumila) cultivars |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139171/ https://www.ncbi.nlm.nih.gov/pubmed/35625439 http://dx.doi.org/10.3390/biology11050711 |
work_keys_str_mv | AT zhangluoyan comparativetranscriptomeanalysisrevealscandidategenesandpathwaysforpotentialbranchgrowthinelmulmuspumilacultivars AT xieshaoqiu comparativetranscriptomeanalysisrevealscandidategenesandpathwaysforpotentialbranchgrowthinelmulmuspumilacultivars AT yangcheng comparativetranscriptomeanalysisrevealscandidategenesandpathwaysforpotentialbranchgrowthinelmulmuspumilacultivars AT caodongling comparativetranscriptomeanalysisrevealscandidategenesandpathwaysforpotentialbranchgrowthinelmulmuspumilacultivars AT fanshoujin comparativetranscriptomeanalysisrevealscandidategenesandpathwaysforpotentialbranchgrowthinelmulmuspumilacultivars AT zhangxuejie comparativetranscriptomeanalysisrevealscandidategenesandpathwaysforpotentialbranchgrowthinelmulmuspumilacultivars |