Cargando…
Pentraxin-3 in the Spinal Dorsal Horn Upregulates Nectin-1 Expression in Neuropathic Pain after Spinal Nerve Damage in Male Mice
Purpose: Neuropathic pain often originates from nerve injury or diseases of the somatosensory nervous system. However, its specific pathogenesis remains unclear. The requirement for excitatory synaptic plasticity in pain-related syndromes has been demonstrated. A recent study reported that pentraxin...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139193/ https://www.ncbi.nlm.nih.gov/pubmed/35625034 http://dx.doi.org/10.3390/brainsci12050648 |
_version_ | 1784714802042503168 |
---|---|
author | Zhu, Min Yu, Hongli Sun, Ying Yu, Wenli |
author_facet | Zhu, Min Yu, Hongli Sun, Ying Yu, Wenli |
author_sort | Zhu, Min |
collection | PubMed |
description | Purpose: Neuropathic pain often originates from nerve injury or diseases of the somatosensory nervous system. However, its specific pathogenesis remains unclear. The requirement for excitatory synaptic plasticity in pain-related syndromes has been demonstrated. A recent study reported that pentraxin-3 is important in glutamatergic synaptic formation and function. Meanwhile, nectin-1 mediates synaptogenesis in neurological disorders. The present study aimed to evaluate whether pentraxin-3 and nectin-1 modulate spinal nerve damage-related neuropathic pain in male mice. Methods: L(4) spinal nerve ligation (SNL) in male mice was performed to induce experimental neuropathic pain. Mechanical allodynia and heat hyperalgesia following SNL were based on paw withdrawal (PW) threshold and PW latency, respectively. Spinal pentraxin-3 levels and nectin-1 expression following SNL were examined. Pentraxin-3 and nectin-1 knockdown models were established by the shRNA method. These models were used with a recombinant pentraxin-3 cell model to investigate the underlying mechanisms of SNL. Results: The SNL operation generated persistent decreases in mechanical PW threshold and thermal PW latency, with subsequent long-lasting elevations in spinal pentraxin-3 and nectin-1 expression levels. Pentraxin-3 knockdown reduced SNL-associated neuropathic pain behaviors as well as nectin-1 amounts in the spinal dorsal horn. Nectin-1 deficiency impaired mechanical allodynia and thermal hyperalgesia following spinal nerve injury. The application of recombinant pentraxin-3 in the spinal cord triggered an acute nociception phenotype and induced spinal overexpression of nectin-1. The intrathecal knockdown of nectin-1 prevented exogenous pentraxin-3-evoked pain hypersensitivity. Conclusions: The findings suggest spinal pentraxin-3 is required for SNL-triggered neuropathic pain via nectin-1 upregulation in male mice. |
format | Online Article Text |
id | pubmed-9139193 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91391932022-05-28 Pentraxin-3 in the Spinal Dorsal Horn Upregulates Nectin-1 Expression in Neuropathic Pain after Spinal Nerve Damage in Male Mice Zhu, Min Yu, Hongli Sun, Ying Yu, Wenli Brain Sci Article Purpose: Neuropathic pain often originates from nerve injury or diseases of the somatosensory nervous system. However, its specific pathogenesis remains unclear. The requirement for excitatory synaptic plasticity in pain-related syndromes has been demonstrated. A recent study reported that pentraxin-3 is important in glutamatergic synaptic formation and function. Meanwhile, nectin-1 mediates synaptogenesis in neurological disorders. The present study aimed to evaluate whether pentraxin-3 and nectin-1 modulate spinal nerve damage-related neuropathic pain in male mice. Methods: L(4) spinal nerve ligation (SNL) in male mice was performed to induce experimental neuropathic pain. Mechanical allodynia and heat hyperalgesia following SNL were based on paw withdrawal (PW) threshold and PW latency, respectively. Spinal pentraxin-3 levels and nectin-1 expression following SNL were examined. Pentraxin-3 and nectin-1 knockdown models were established by the shRNA method. These models were used with a recombinant pentraxin-3 cell model to investigate the underlying mechanisms of SNL. Results: The SNL operation generated persistent decreases in mechanical PW threshold and thermal PW latency, with subsequent long-lasting elevations in spinal pentraxin-3 and nectin-1 expression levels. Pentraxin-3 knockdown reduced SNL-associated neuropathic pain behaviors as well as nectin-1 amounts in the spinal dorsal horn. Nectin-1 deficiency impaired mechanical allodynia and thermal hyperalgesia following spinal nerve injury. The application of recombinant pentraxin-3 in the spinal cord triggered an acute nociception phenotype and induced spinal overexpression of nectin-1. The intrathecal knockdown of nectin-1 prevented exogenous pentraxin-3-evoked pain hypersensitivity. Conclusions: The findings suggest spinal pentraxin-3 is required for SNL-triggered neuropathic pain via nectin-1 upregulation in male mice. MDPI 2022-05-15 /pmc/articles/PMC9139193/ /pubmed/35625034 http://dx.doi.org/10.3390/brainsci12050648 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhu, Min Yu, Hongli Sun, Ying Yu, Wenli Pentraxin-3 in the Spinal Dorsal Horn Upregulates Nectin-1 Expression in Neuropathic Pain after Spinal Nerve Damage in Male Mice |
title | Pentraxin-3 in the Spinal Dorsal Horn Upregulates Nectin-1 Expression in Neuropathic Pain after Spinal Nerve Damage in Male Mice |
title_full | Pentraxin-3 in the Spinal Dorsal Horn Upregulates Nectin-1 Expression in Neuropathic Pain after Spinal Nerve Damage in Male Mice |
title_fullStr | Pentraxin-3 in the Spinal Dorsal Horn Upregulates Nectin-1 Expression in Neuropathic Pain after Spinal Nerve Damage in Male Mice |
title_full_unstemmed | Pentraxin-3 in the Spinal Dorsal Horn Upregulates Nectin-1 Expression in Neuropathic Pain after Spinal Nerve Damage in Male Mice |
title_short | Pentraxin-3 in the Spinal Dorsal Horn Upregulates Nectin-1 Expression in Neuropathic Pain after Spinal Nerve Damage in Male Mice |
title_sort | pentraxin-3 in the spinal dorsal horn upregulates nectin-1 expression in neuropathic pain after spinal nerve damage in male mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139193/ https://www.ncbi.nlm.nih.gov/pubmed/35625034 http://dx.doi.org/10.3390/brainsci12050648 |
work_keys_str_mv | AT zhumin pentraxin3inthespinaldorsalhornupregulatesnectin1expressioninneuropathicpainafterspinalnervedamageinmalemice AT yuhongli pentraxin3inthespinaldorsalhornupregulatesnectin1expressioninneuropathicpainafterspinalnervedamageinmalemice AT sunying pentraxin3inthespinaldorsalhornupregulatesnectin1expressioninneuropathicpainafterspinalnervedamageinmalemice AT yuwenli pentraxin3inthespinaldorsalhornupregulatesnectin1expressioninneuropathicpainafterspinalnervedamageinmalemice |