Cargando…

Cold Atmospheric Plasma Reduces Vessel Density and Increases Vascular Permeability and Apoptotic Cell Death in Solid Tumors

SIMPLE SUMMARY: Cold atmospheric plasma (CAP) resembles a physical state of matter, best described as ionized gas. CAP has demonstrated promising anti-cancer effects. Despite their relevance for the treatment of solid tumors, effects of CAP on tumor vessels and tumor-blood-circulation are still insu...

Descripción completa

Detalles Bibliográficos
Autores principales: Kugler, Philipp, Becker, Sven, Welz, Christian, Wiesmann, Nadine, Sax, Jonas, Buhr, Christoph R., Thoma, Markus H., Brieger, Juergen, Eckrich, Jonas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139209/
https://www.ncbi.nlm.nih.gov/pubmed/35626037
http://dx.doi.org/10.3390/cancers14102432
Descripción
Sumario:SIMPLE SUMMARY: Cold atmospheric plasma (CAP) resembles a physical state of matter, best described as ionized gas. CAP has demonstrated promising anti-cancer effects. Despite their relevance for the treatment of solid tumors, effects of CAP on tumor vessels and tumor-blood-circulation are still insufficiently investigated. CAP exposure reduced the vessel network inside the tumor and increased vascular leakiness, leading to an elevated tumor cell death and bleeding into the tumor tissue. These effects highlight the potential of CAP as a promising and yet underrated therapeutic modality for addressing the tumor vasculature in the treatment of solid tumors. ABSTRACT: Cold atmospheric plasma (CAP) has demonstrated promising anti-cancer effects in numerous in vitro and in vivo studies. Despite their relevance for the treatment of solid tumors, effects of CAP on tumor vasculature and microcirculation have only rarely been investigated. Here, we report the reduction of vessel density and an increase in vascular permeability and tumor cell apoptosis after CAP application. Solid tumors in the chorioallantoic membrane of chicken embryos were treated with CAP and evaluated with respect to effects of CAP on embryo survival, tumor size, and tumor morphology. Furthermore, intratumoral blood vessel density, apoptotic cell death and the tumor-associated microcirculation were investigated and compared to sham treatment. Treatment with CAP significantly reduced intratumoral vessel density while increasing the rate of intratumoral apoptosis in solid tumors. Furthermore, CAP treatment increased vascular permeability and attenuated the microcirculation by causing vessel occlusions in the tumor-associated vasculature. These effects point out the potential of CAP as a promising and yet underrated therapeutic modality for addressing the tumor vasculature in the treatment of solid tumors.