Cargando…
Metabolomic Profiling in Patients with Heart Failure and Exercise Intolerance: Kynurenine as a Potential Biomarker
Aims: Metabolic and structural perturbations in skeletal muscle have been found in patients with heart failure (HF) both with preserved (HFpEF) and reduced (HFrEF) ejection fraction in association with reduced muscle endurance (RME). We aimed in the current study to create phenotypes for patients wi...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139290/ https://www.ncbi.nlm.nih.gov/pubmed/35626711 http://dx.doi.org/10.3390/cells11101674 |
Sumario: | Aims: Metabolic and structural perturbations in skeletal muscle have been found in patients with heart failure (HF) both with preserved (HFpEF) and reduced (HFrEF) ejection fraction in association with reduced muscle endurance (RME). We aimed in the current study to create phenotypes for patients with RME and HFpEF compared to RME HFrEF according to their metabolomic profiles and to test the potential of Kynurenine (Kyn) as a marker for RME. Methods: Altogether, 18 HFrEF, 17 HFpEF, and 20 healthy controls (HC) were prospectively included in the current study. The following tests were performed on all participants: isokinetic muscle function tests, echocardiography, spiroergometry, and varied blood tests. Liquid chromatography tandem mass spectrometry was used to quantify metabolites in serum. Results: Except for aromatic and branched amino acids (AA), patients with HF showed reduced AAs compared to HC. Further perturbations were elevated concentrations of Kyn and acylcarnitines (ACs) in HFpEF and HFrEF patients (p < 0.05). While patients with HFpEF and RME presented with reduced concentrations of ACs (long- and medium-chains), those with HFrEF and RME had distorted AAs metabolism (p < 0.05). With an area under the curve (AUC) of 0.83, Kyn shows potential as a marker in HF and RME (specificity 70%, sensitivity 83%). In a multiple regression model consisting of short-chain-ACs, spermine, ornithine, glutamate, and Kyn, the latest was an independent predictor for RME (95% CI: −13.01, −3.30, B: −8.2 per 1 µM increase, p = 0.001). Conclusions: RME in patients with HFpEF vs. HFrEF proved to have different metabolomic profiles suggesting varied pathophysiology. Kyn might be a promising biomarker for patients with HF and RME. |
---|