Cargando…
Structural MRI-Based Schizophrenia Classification Using Autoencoders and 3D Convolutional Neural Networks in Combination with Various Pre-Processing Techniques
Schizophrenia is a severe neuropsychiatric disease whose diagnosis, unfortunately, lacks an objective diagnostic tool supporting a thorough psychiatric examination of the patient. We took advantage of today’s computational abilities, structural magnetic resonance imaging, and modern machine learning...
Autores principales: | Vyškovský, Roman, Schwarz, Daniel, Churová, Vendula, Kašpárek, Tomáš |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139344/ https://www.ncbi.nlm.nih.gov/pubmed/35625002 http://dx.doi.org/10.3390/brainsci12050615 |
Ejemplares similares
-
Anomaly Detection Algorithm for Real-World Data and Evidence in Clinical Research: Implementation, Evaluation, and Validation Study
por: Churová, Vendula, et al.
Publicado: (2021) -
Identification of Laminar Composition in Cerebral Cortex Using Low-Resolution Magnetic Resonance Images and Trust Region Optimization Algorithm
por: Jamárik, Jakub, et al.
Publicado: (2021) -
Robust Computationally-Efficient Wireless Emitter Classification Using Autoencoders and Convolutional Neural Networks
por: Almazrouei, Ebtesam, et al.
Publicado: (2021) -
A Deep Autoencoder-Based Convolution Neural Network Framework for Bearing Fault Classification in Induction Motors
por: Toma, Rafia Nishat, et al.
Publicado: (2021) -
Orthogonal Local Image Descriptors with Convolutional Autoencoders
por: Roman-Rangel, Edgar, et al.
Publicado: (2020)