Cargando…
Motor Imagery Classification via Kernel-Based Domain Adaptation on an SPD Manifold
Background: Recording the calibration data of a brain–computer interface is a laborious process and is an unpleasant experience for the subjects. Domain adaptation is an effective technology to remedy the shortage of target data by leveraging rich labeled data from the sources. However, most prior m...
Autores principales: | Jiang, Qin, Zhang, Yi, Zheng, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139384/ https://www.ncbi.nlm.nih.gov/pubmed/35625045 http://dx.doi.org/10.3390/brainsci12050659 |
Ejemplares similares
-
Kernel Manifold Alignment for Domain Adaptation
por: Tuia, Devis, et al.
Publicado: (2016) -
Distribution Adaptation and Classification Framework Based on Multiple Kernel Learning for Motor Imagery BCI Illiteracy
por: Tao, Lin, et al.
Publicado: (2022) -
Transfer Kernel Common Spatial Patterns for Motor Imagery Brain-Computer Interface Classification
por: Dai, Mengxi, et al.
Publicado: (2018) -
A dual alignment-based multi-source domain adaptation framework for motor imagery EEG classification
por: Xu, Dong-qin, et al.
Publicado: (2022) -
Dimensionality Reduction of SPD Data Based on Riemannian Manifold Tangent Spaces and Isometry
por: Gao, Wenxu, et al.
Publicado: (2021)