Cargando…
Crowd annotations can approximate clinical autism impressions from short home videos with privacy protections
Artificial Intelligence (A.I.) solutions are increasingly considered for telemedicine. For these methods to serve children and their families in home settings, it is crucial to ensure the privacy of the child and parent or caregiver. To address this challenge, we explore the potential for global ima...
Autores principales: | Washington, Peter, Chrisman, Brianna, Leblanc, Emilie, Dunlap, Kaitlyn, Kline, Aaron, Mutlu, Cezmi, Stockham, Nate, Paskov, Kelley, Wall, Dennis Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139408/ https://www.ncbi.nlm.nih.gov/pubmed/35634270 http://dx.doi.org/10.1016/j.ibmed.2022.100056 |
Ejemplares similares
-
Precision Telemedicine through Crowdsourced Machine Learning: Testing Variability of Crowd Workers for Video-Based Autism Feature Recognition
por: Washington, Peter, et al.
Publicado: (2020) -
Crowdsourced privacy-preserved feature tagging of short home videos for machine learning ASD detection
por: Washington, Peter, et al.
Publicado: (2021) -
Selection of trustworthy crowd workers for telemedical diagnosis of pediatric autism spectrum disorder
por: Washington, Peter, et al.
Publicado: (2021) -
Identification of Social Engagement Indicators Associated With Autism Spectrum Disorder Using a Game-Based Mobile App: Comparative Study of Gaze Fixation and Visual Scanning Methods
por: Varma, Maya, et al.
Publicado: (2022) -
Improved Digital Therapy for Developmental Pediatrics Using Domain-Specific Artificial Intelligence: Machine Learning Study
por: Washington, Peter, et al.
Publicado: (2022)