Cargando…

The Effects of Attention on the Syllable-Induced Prepulse Inhibition of the Startle Reflex and Cortical EEG Responses against Energetic or Informational Masking in Humans

Prepulse inhibition (PPI) is the reduction in the acoustic startle reflex (ASR) when the startling stimulus (pulse) is preceded by a weaker, non-starting stimulus. This can be enhanced by facilitating selective attention to the prepulse against a noise-masking background. On the other hand, the faci...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xiaoqin, Liu, Lei, Yang, Pengcheng, Ding, Yu, Wang, Changming, Li, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139428/
https://www.ncbi.nlm.nih.gov/pubmed/35625046
http://dx.doi.org/10.3390/brainsci12050660
Descripción
Sumario:Prepulse inhibition (PPI) is the reduction in the acoustic startle reflex (ASR) when the startling stimulus (pulse) is preceded by a weaker, non-starting stimulus. This can be enhanced by facilitating selective attention to the prepulse against a noise-masking background. On the other hand, the facilitation of selective attention to a target speech can release the target speech from masking, particularly from speech informational masking. It is not clear whether attentional regulation also affects PPI in this kind of auditory masking. This study used a speech syllable as the prepulse to examine whether the masker type and perceptual spatial attention can affect the PPI or the scalp EEG responses to the prepulse in healthy younger-adult humans, and whether the ERPs evoked by the prepulse can predict the PPI intensity of the ASR. The results showed that the speech masker produced a larger masking effect than the noise masker, and the perceptual spatial separation facilitated selective attention to the prepulse, enhancing both the N1 component of the prepulse syllable and the PPI of the ASR, particularly when the masker was speech. In addition, there was no significant correlation between the PPI and ERPs under any of the conditions, but the perceptual separation-induced PPI enhancement and ERP N1P2 peak-to-peak amplitude enhancement were correlated under the speech-masking condition. Thus, the attention-mediated PPI is useful for differentiating noise energetic masking and speech informational masking, and the perceptual separation-induced release of the prepulse from informational masking is more associated with attention-mediated early cortical unmasking processing than with energetic masking. However, the processes for the PPI of the ASR and the cortical responses to the prepulse are mediated by different neural mechanisms.