Cargando…
Exercise Enhances Branched-Chain Amino Acid Catabolism and Decreases Cardiac Vulnerability to Myocardial Ischemic Injury
Long-term exercise-induced metabolic adaptations occupy a central position in exercise-afforded cardiac benefits. Emerging evidence suggests that branched-chain amino acid (BCAA) catabolic defect contributes to cardiac dysfunction in multiple cardiometabolic diseases. However, the role of BCAA catab...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139679/ https://www.ncbi.nlm.nih.gov/pubmed/35626742 http://dx.doi.org/10.3390/cells11101706 |
_version_ | 1784714915007692800 |
---|---|
author | Wu, Guiling Guo, Yanjie Li, Min Li, Chenhan Tan, Yanzhen Li, Yueyang Li, Jia Wang, Li Zhang, Xing Gao, Feng |
author_facet | Wu, Guiling Guo, Yanjie Li, Min Li, Chenhan Tan, Yanzhen Li, Yueyang Li, Jia Wang, Li Zhang, Xing Gao, Feng |
author_sort | Wu, Guiling |
collection | PubMed |
description | Long-term exercise-induced metabolic adaptations occupy a central position in exercise-afforded cardiac benefits. Emerging evidence suggests that branched-chain amino acid (BCAA) catabolic defect contributes to cardiac dysfunction in multiple cardiometabolic diseases. However, the role of BCAA catabolism in exercise-afforded cardiac benefits remains unknown. Here, we show that exercise improves BCAA catabolism and thus reduce cardiac vulnerability to myocardial ischemic injury. Exercise increased circulating BCAA levels in both humans (male adolescent athletes) and mice (following an 8-week swimming intervention). It increased the expression of mitochondrial localized 2C-type serine-threonine protein phosphatase (PP2Cm), a key enzyme in regulating BCAA catabolism, and decreased BCAA accumulation in mouse hearts, indicating an increase in BCAA catabolism. Pharmacological promotion of BCAA catabolism protected the mouse heart against myocardial infarction (MI) induced by permanent ligation of the left descending coronary artery. Although cardiac-specific PP2Cm knockout showed no significant effects on cardiac structural and functional adaptations to exercise, it blunted the cardioprotective effects of exercise against MI. Mechanistically, exercise alleviated BCAA accumulation and subsequently inactivated the mammalian target of rapamycin in MI hearts. These results showed that exercise elevated BCAA catabolism and protected the heart against myocardial ischemic injury, reinforcing the role of exercise in the promotion of cardiac health. |
format | Online Article Text |
id | pubmed-9139679 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91396792022-05-28 Exercise Enhances Branched-Chain Amino Acid Catabolism and Decreases Cardiac Vulnerability to Myocardial Ischemic Injury Wu, Guiling Guo, Yanjie Li, Min Li, Chenhan Tan, Yanzhen Li, Yueyang Li, Jia Wang, Li Zhang, Xing Gao, Feng Cells Article Long-term exercise-induced metabolic adaptations occupy a central position in exercise-afforded cardiac benefits. Emerging evidence suggests that branched-chain amino acid (BCAA) catabolic defect contributes to cardiac dysfunction in multiple cardiometabolic diseases. However, the role of BCAA catabolism in exercise-afforded cardiac benefits remains unknown. Here, we show that exercise improves BCAA catabolism and thus reduce cardiac vulnerability to myocardial ischemic injury. Exercise increased circulating BCAA levels in both humans (male adolescent athletes) and mice (following an 8-week swimming intervention). It increased the expression of mitochondrial localized 2C-type serine-threonine protein phosphatase (PP2Cm), a key enzyme in regulating BCAA catabolism, and decreased BCAA accumulation in mouse hearts, indicating an increase in BCAA catabolism. Pharmacological promotion of BCAA catabolism protected the mouse heart against myocardial infarction (MI) induced by permanent ligation of the left descending coronary artery. Although cardiac-specific PP2Cm knockout showed no significant effects on cardiac structural and functional adaptations to exercise, it blunted the cardioprotective effects of exercise against MI. Mechanistically, exercise alleviated BCAA accumulation and subsequently inactivated the mammalian target of rapamycin in MI hearts. These results showed that exercise elevated BCAA catabolism and protected the heart against myocardial ischemic injury, reinforcing the role of exercise in the promotion of cardiac health. MDPI 2022-05-20 /pmc/articles/PMC9139679/ /pubmed/35626742 http://dx.doi.org/10.3390/cells11101706 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wu, Guiling Guo, Yanjie Li, Min Li, Chenhan Tan, Yanzhen Li, Yueyang Li, Jia Wang, Li Zhang, Xing Gao, Feng Exercise Enhances Branched-Chain Amino Acid Catabolism and Decreases Cardiac Vulnerability to Myocardial Ischemic Injury |
title | Exercise Enhances Branched-Chain Amino Acid Catabolism and Decreases Cardiac Vulnerability to Myocardial Ischemic Injury |
title_full | Exercise Enhances Branched-Chain Amino Acid Catabolism and Decreases Cardiac Vulnerability to Myocardial Ischemic Injury |
title_fullStr | Exercise Enhances Branched-Chain Amino Acid Catabolism and Decreases Cardiac Vulnerability to Myocardial Ischemic Injury |
title_full_unstemmed | Exercise Enhances Branched-Chain Amino Acid Catabolism and Decreases Cardiac Vulnerability to Myocardial Ischemic Injury |
title_short | Exercise Enhances Branched-Chain Amino Acid Catabolism and Decreases Cardiac Vulnerability to Myocardial Ischemic Injury |
title_sort | exercise enhances branched-chain amino acid catabolism and decreases cardiac vulnerability to myocardial ischemic injury |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139679/ https://www.ncbi.nlm.nih.gov/pubmed/35626742 http://dx.doi.org/10.3390/cells11101706 |
work_keys_str_mv | AT wuguiling exerciseenhancesbranchedchainaminoacidcatabolismanddecreasescardiacvulnerabilitytomyocardialischemicinjury AT guoyanjie exerciseenhancesbranchedchainaminoacidcatabolismanddecreasescardiacvulnerabilitytomyocardialischemicinjury AT limin exerciseenhancesbranchedchainaminoacidcatabolismanddecreasescardiacvulnerabilitytomyocardialischemicinjury AT lichenhan exerciseenhancesbranchedchainaminoacidcatabolismanddecreasescardiacvulnerabilitytomyocardialischemicinjury AT tanyanzhen exerciseenhancesbranchedchainaminoacidcatabolismanddecreasescardiacvulnerabilitytomyocardialischemicinjury AT liyueyang exerciseenhancesbranchedchainaminoacidcatabolismanddecreasescardiacvulnerabilitytomyocardialischemicinjury AT lijia exerciseenhancesbranchedchainaminoacidcatabolismanddecreasescardiacvulnerabilitytomyocardialischemicinjury AT wangli exerciseenhancesbranchedchainaminoacidcatabolismanddecreasescardiacvulnerabilitytomyocardialischemicinjury AT zhangxing exerciseenhancesbranchedchainaminoacidcatabolismanddecreasescardiacvulnerabilitytomyocardialischemicinjury AT gaofeng exerciseenhancesbranchedchainaminoacidcatabolismanddecreasescardiacvulnerabilitytomyocardialischemicinjury |