Cargando…
Deep Learning for Reaction-Diffusion Glioma Growth Modeling: Towards a Fully Personalized Model?
SIMPLE SUMMARY: Mathematical tumor growth models have been proposed for decades to capture the growth of gliomas, an aggressive form of brain tumor. However, the estimation of the tumor cell-density distribution at diagnosis and model parameters from partial observations provided by magnetic resonan...
Autores principales: | Martens, Corentin, Rovai, Antonin, Bonatto, Daniele, Metens, Thierry, Debeir, Olivier, Decaestecker, Christine, Goldman, Serge, Van Simaeys, Gaetan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139770/ https://www.ncbi.nlm.nih.gov/pubmed/35626134 http://dx.doi.org/10.3390/cancers14102530 |
Ejemplares similares
-
Initial Condition Assessment for Reaction-Diffusion Glioma Growth Models: A Translational MRI-Histology (In)Validation Study
por: Martens, Corentin, et al.
Publicado: (2021) -
Voxelwise Principal Component Analysis of Dynamic [S-Methyl-(11)C]Methionine PET Data in Glioma Patients
por: Martens, Corentin, et al.
Publicado: (2021) -
Panoptic quality should be avoided as a metric for assessing cell nuclei segmentation and classification in digital pathology
por: Foucart, Adrien, et al.
Publicado: (2023) -
A Handcrafted Radiomics-Based Model for the Diagnosis of Usual Interstitial Pneumonia in Patients with Idiopathic Pulmonary Fibrosis
por: Refaee, Turkey, et al.
Publicado: (2022) -
A New Method to Address Unmet Needs for Extracting Individual Cell Migration Features from a Large Number of Cells Embedded in 3D Volumes
por: Adanja, Ivan, et al.
Publicado: (2011)