Cargando…
iMIL4PATH: A Semi-Supervised Interpretable Approach for Colorectal Whole-Slide Images
SIMPLE SUMMARY: Nowadays, colorectal cancer is the third most incident cancer worldwide and, although it can be detected by imaging techniques, diagnosis is always based on biopsy samples. This assessment includes neoplasia grading, a subjective yet important task for pathologists. With the growing...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139905/ https://www.ncbi.nlm.nih.gov/pubmed/35626093 http://dx.doi.org/10.3390/cancers14102489 |
Sumario: | SIMPLE SUMMARY: Nowadays, colorectal cancer is the third most incident cancer worldwide and, although it can be detected by imaging techniques, diagnosis is always based on biopsy samples. This assessment includes neoplasia grading, a subjective yet important task for pathologists. With the growing availability of digital slides, the development of robust and high-performance computer vision algorithms can help to tackle such a task. In this work, we propose an approach to automatically detect and grade lesions in colorectal biopsies with high sensitivity. The presented model attempts to support slide decision reasoning in terms of the spatial distribution of lesions, focusing the pathologist’s attention on key areas. Thus, it can be integrated into clinical practice as a second opinion or as a flag for details that may have been missed at first glance. ABSTRACT: Colorectal cancer (CRC) diagnosis is based on samples obtained from biopsies, assessed in pathology laboratories. Due to population growth and ageing, as well as better screening programs, the CRC incidence rate has been increasing, leading to a higher workload for pathologists. In this sense, the application of AI for automatic CRC diagnosis, particularly on whole-slide images (WSI), is of utmost relevance, in order to assist professionals in case triage and case review. In this work, we propose an interpretable semi-supervised approach to detect lesions in colorectal biopsies with high sensitivity, based on multiple-instance learning and feature aggregation methods. The model was developed on an extended version of the recent, publicly available CRC dataset (the CRC+ dataset with 4433 WSI), using 3424 slides for training and 1009 slides for evaluation. The proposed method attained 90.19% classification ACC, 98.8% sensitivity, 85.7% specificity, and a quadratic weighted kappa of 0.888 at slide-based evaluation. Its generalisation capabilities are also studied on two publicly available external datasets. |
---|