Cargando…
Prediction of Non-Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer Patients with (18)F-FDG PET Radiomics Based Machine Learning Classification
Background: Approximately 26% of esophageal cancer (EC) patients do not respond to neoadjuvant chemoradiotherapy (nCRT), emphasizing the need for pre-treatment selection. The aim of this study was to predict non-response using a radiomic model on baseline (18)F-FDG PET. Methods: Retrospectively, 143...
Autores principales: | Beukinga, Roelof J., Poelmann, Floris B., Kats-Ugurlu, Gursah, Viddeleer, Alain R., Boellaard, Ronald, de Haas, Robbert J., Plukker, John Th. M., Hulshoff, Jan Binne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139915/ https://www.ncbi.nlm.nih.gov/pubmed/35626225 http://dx.doi.org/10.3390/diagnostics12051070 |
Ejemplares similares
-
Effect of Extending the Original CROSS Criteria on Tumor Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer Patients: A National Multicenter Cohort Analysis
por: Wang, Helena Hong, et al.
Publicado: (2020) -
Prognostic Value of the Circumferential Resection Margin in Esophageal Cancer Patients After Neoadjuvant Chemoradiotherapy
por: Hulshoff, J. B., et al.
Publicado: (2015) -
Addition of HER2 and CD44 to (18)F-FDG PET–based clinico-radiomic models enhances prediction of neoadjuvant chemoradiotherapy response in esophageal cancer
por: Beukinga, Roelof J., et al.
Publicado: (2020) -
ASO Author Reflections: Diagnostic Significance of Extramural Venous Invasion in Patients with Locally Advanced Esophageal Cancer
por: Faiz, Zohra, et al.
Publicado: (2018) -
External validation of (18)F-FDG PET-based radiomic models on identification of residual oesophageal cancer after neoadjuvant chemoradiotherapy
por: Valkema, Maria J., et al.
Publicado: (2023)