Cargando…
Parkinson’s Disease Detection from Resting-State EEG Signals Using Common Spatial Pattern, Entropy, and Machine Learning Techniques
Parkinson’s disease (PD) is a very common brain abnormality that affects people all over the world. Early detection of such abnormality is critical in clinical diagnosis in order to prevent disease progression. Electroencephalography (EEG) is one of the most important PD diagnostic tools since this...
Autores principales: | Aljalal, Majid, Aldosari, Saeed A., AlSharabi, Khalil, Abdurraqeeb, Akram M., Alturki, Fahd A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139946/ https://www.ncbi.nlm.nih.gov/pubmed/35626189 http://dx.doi.org/10.3390/diagnostics12051033 |
Ejemplares similares
-
Detection of Parkinson’s disease from EEG signals using discrete wavelet transform, different entropy measures, and machine learning techniques
por: Aljalal, Majid, et al.
Publicado: (2022) -
EEG Signal Analysis for Diagnosing Neurological Disorders Using Discrete Wavelet Transform and Intelligent Techniques †
por: Alturki, Fahd A., et al.
Publicado: (2020) -
EEG-based clinical decision support system for Alzheimer's disorders diagnosis using EMD and deep learning techniques
por: AlSharabi, Khalil, et al.
Publicado: (2023) -
EEG-Based Computer Aided Diagnosis of Autism Spectrum Disorder Using Wavelet, Entropy, and ANN
por: Djemal, Ridha, et al.
Publicado: (2017) -
A pilot study of machine learning of resting-state EEG and depression in Parkinson’s disease
por: Espinoza, Arturo I., et al.
Publicado: (2022)