Cargando…
Implementation of Artificial Intelligence in Diagnostic Practice as a Next Step after Going Digital: The UMC Utrecht Perspective
Building on a growing number of pathology labs having a full digital infrastructure for pathology diagnostics, there is a growing interest in implementing artificial intelligence (AI) algorithms for diagnostic purposes. This article provides an overview of the current status of the digital pathology...
Autores principales: | Flach, Rachel N., Fransen, Nina L., Sonnen, Andreas F. P., Nguyen, Tri Q., Breimer, Gerben E., Veta, Mitko, Stathonikos, Nikolas, van Dooijeweert, Carmen, van Diest, Paul J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140005/ https://www.ncbi.nlm.nih.gov/pubmed/35626198 http://dx.doi.org/10.3390/diagnostics12051042 |
Ejemplares similares
-
Going fully digital: Perspective of a Dutch academic pathology lab
por: Stathonikos, Nikolas, et al.
Publicado: (2013) -
CONFIDENT-trial protocol: a pragmatic template for clinical implementation of artificial intelligence assistance in pathology
por: Flach, Rachel N, et al.
Publicado: (2023) -
Deep learning supported mitoses counting on whole slide images: A pilot study for validating breast cancer grading in the clinical workflow
por: van Bergeijk, Stijn A., et al.
Publicado: (2023) -
Deep learning-based grading of ductal carcinoma in situ in breast histopathology images
por: Wetstein, Suzanne C., et al.
Publicado: (2021) -
Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images
por: Wetstein, Suzanne C., et al.
Publicado: (2022)