Cargando…
The Human Ntn-Hydrolase Superfamily: Structure, Functions and Perspectives
N-terminal nucleophile (Ntn)-hydrolases catalyze the cleavage of amide bonds in a variety of macromolecules, including the peptide bond in proteins, the amide bond in N-linked protein glycosylation, and the amide bond linking a fatty acid to sphingosine in complex sphingolipids. Ntn-hydrolases are a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140057/ https://www.ncbi.nlm.nih.gov/pubmed/35626629 http://dx.doi.org/10.3390/cells11101592 |
Sumario: | N-terminal nucleophile (Ntn)-hydrolases catalyze the cleavage of amide bonds in a variety of macromolecules, including the peptide bond in proteins, the amide bond in N-linked protein glycosylation, and the amide bond linking a fatty acid to sphingosine in complex sphingolipids. Ntn-hydrolases are all sharing two common hallmarks: Firstly, the enzymes are synthesized as inactive precursors that undergo auto-proteolytic self-activation, which, as a consequence, reveals the active site nucleophile at the newly formed N-terminus. Secondly, all Ntn-hydrolases share a structural consistent αββα-fold, notwithstanding the total lack of amino acid sequence homology. In humans, five subclasses of the Ntn-superfamily have been identified so far, comprising relevant members such as the catalytic active subunits of the proteasome or a number of lysosomal hydrolases, which are often associated with lysosomal storage diseases. This review gives an updated overview on the structural, functional, and (patho-)physiological characteristics of human Ntn-hydrolases, in particular. |
---|