Cargando…
Deep Convolutional Recurrent Model for Automatic Scoring Sleep Stages Based on Single-Lead ECG Signal
Background: Sleep stage scoring, which is an essential step in the quantitative analysis of sleep monitoring, relies on human experts and is therefore subjective and time-consuming; thus, an easy and accurate method is needed for the automatic scoring of sleep stages. Methods: In this study, we cons...
Autores principales: | Urtnasan, Erdenebayar, Park, Jong-Uk, Joo, Eun Yeon, Lee, Kyoung-Joung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140070/ https://www.ncbi.nlm.nih.gov/pubmed/35626390 http://dx.doi.org/10.3390/diagnostics12051235 |
Ejemplares similares
-
Identification of Sleep Apnea Severity Based on Deep Learning from a Short-term Normal ECG
por: Urtnasan, Erdenebayar, et al.
Publicado: (2020) -
Automatic Prediction of Atrial Fibrillation Based on Convolutional Neural Network Using a Short-term Normal Electrocardiogram Signal
por: Erdenebayar, Urtnasan, et al.
Publicado: (2019) -
AI-Enabled Algorithm for Automatic Classification of Sleep Disorders Based on Single-Lead Electrocardiogram
por: Urtnasan, Erdenebayar, et al.
Publicado: (2021) -
Deep Learning for Automatic Detection of Periodic Limb Movement Disorder Based on Electrocardiogram Signals
por: Urtnasan, Erdenebayar, et al.
Publicado: (2022) -
Obstructive Sleep Apnea Screening Using a Piezo-Electric Sensor
por: Erdenebayar, Urtnasan, et al.
Publicado: (2017)