Cargando…

Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review

Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful in...

Descripción completa

Detalles Bibliográficos
Autores principales: Munjral, Smiksha, Maindarkar, Mahesh, Ahluwalia, Puneet, Puvvula, Anudeep, Jamthikar, Ankush, Jujaray, Tanay, Suri, Neha, Paul, Sudip, Pathak, Rajesh, Saba, Luca, Chalakkal, Renoh Johnson, Gupta, Suneet, Faa, Gavino, Singh, Inder M., Chadha, Paramjit S., Turk, Monika, Johri, Amer M., Khanna, Narendra N., Viskovic, Klaudija, Mavrogeni, Sophie, Laird, John R., Pareek, Gyan, Miner, Martin, Sobel, David W., Balestrieri, Antonella, Sfikakis, Petros P., Tsoulfas, George, Protogerou, Athanasios, Misra, Durga Prasanna, Agarwal, Vikas, Kitas, George D., Kolluri, Raghu, Teji, Jagjit, Al-Maini, Mustafa, Dhanjil, Surinder K., Sockalingam, Meyypan, Saxena, Ajit, Sharma, Aditya, Rathore, Vijay, Fatemi, Mostafa, Alizad, Azra, Viswanathan, Vijay, Krishnan, Padukode R., Omerzu, Tomaz, Naidu, Subbaram, Nicolaides, Andrew, Fouda, Mostafa M., Suri, Jasjit S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140106/
https://www.ncbi.nlm.nih.gov/pubmed/35626389
http://dx.doi.org/10.3390/diagnostics12051234
_version_ 1784715017952690176
author Munjral, Smiksha
Maindarkar, Mahesh
Ahluwalia, Puneet
Puvvula, Anudeep
Jamthikar, Ankush
Jujaray, Tanay
Suri, Neha
Paul, Sudip
Pathak, Rajesh
Saba, Luca
Chalakkal, Renoh Johnson
Gupta, Suneet
Faa, Gavino
Singh, Inder M.
Chadha, Paramjit S.
Turk, Monika
Johri, Amer M.
Khanna, Narendra N.
Viskovic, Klaudija
Mavrogeni, Sophie
Laird, John R.
Pareek, Gyan
Miner, Martin
Sobel, David W.
Balestrieri, Antonella
Sfikakis, Petros P.
Tsoulfas, George
Protogerou, Athanasios
Misra, Durga Prasanna
Agarwal, Vikas
Kitas, George D.
Kolluri, Raghu
Teji, Jagjit
Al-Maini, Mustafa
Dhanjil, Surinder K.
Sockalingam, Meyypan
Saxena, Ajit
Sharma, Aditya
Rathore, Vijay
Fatemi, Mostafa
Alizad, Azra
Viswanathan, Vijay
Krishnan, Padukode R.
Omerzu, Tomaz
Naidu, Subbaram
Nicolaides, Andrew
Fouda, Mostafa M.
Suri, Jasjit S.
author_facet Munjral, Smiksha
Maindarkar, Mahesh
Ahluwalia, Puneet
Puvvula, Anudeep
Jamthikar, Ankush
Jujaray, Tanay
Suri, Neha
Paul, Sudip
Pathak, Rajesh
Saba, Luca
Chalakkal, Renoh Johnson
Gupta, Suneet
Faa, Gavino
Singh, Inder M.
Chadha, Paramjit S.
Turk, Monika
Johri, Amer M.
Khanna, Narendra N.
Viskovic, Klaudija
Mavrogeni, Sophie
Laird, John R.
Pareek, Gyan
Miner, Martin
Sobel, David W.
Balestrieri, Antonella
Sfikakis, Petros P.
Tsoulfas, George
Protogerou, Athanasios
Misra, Durga Prasanna
Agarwal, Vikas
Kitas, George D.
Kolluri, Raghu
Teji, Jagjit
Al-Maini, Mustafa
Dhanjil, Surinder K.
Sockalingam, Meyypan
Saxena, Ajit
Sharma, Aditya
Rathore, Vijay
Fatemi, Mostafa
Alizad, Azra
Viswanathan, Vijay
Krishnan, Padukode R.
Omerzu, Tomaz
Naidu, Subbaram
Nicolaides, Andrew
Fouda, Mostafa M.
Suri, Jasjit S.
author_sort Munjral, Smiksha
collection PubMed
description Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework.
format Online
Article
Text
id pubmed-9140106
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91401062022-05-28 Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review Munjral, Smiksha Maindarkar, Mahesh Ahluwalia, Puneet Puvvula, Anudeep Jamthikar, Ankush Jujaray, Tanay Suri, Neha Paul, Sudip Pathak, Rajesh Saba, Luca Chalakkal, Renoh Johnson Gupta, Suneet Faa, Gavino Singh, Inder M. Chadha, Paramjit S. Turk, Monika Johri, Amer M. Khanna, Narendra N. Viskovic, Klaudija Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Kolluri, Raghu Teji, Jagjit Al-Maini, Mustafa Dhanjil, Surinder K. Sockalingam, Meyypan Saxena, Ajit Sharma, Aditya Rathore, Vijay Fatemi, Mostafa Alizad, Azra Viswanathan, Vijay Krishnan, Padukode R. Omerzu, Tomaz Naidu, Subbaram Nicolaides, Andrew Fouda, Mostafa M. Suri, Jasjit S. Diagnostics (Basel) Review Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework. MDPI 2022-05-14 /pmc/articles/PMC9140106/ /pubmed/35626389 http://dx.doi.org/10.3390/diagnostics12051234 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Munjral, Smiksha
Maindarkar, Mahesh
Ahluwalia, Puneet
Puvvula, Anudeep
Jamthikar, Ankush
Jujaray, Tanay
Suri, Neha
Paul, Sudip
Pathak, Rajesh
Saba, Luca
Chalakkal, Renoh Johnson
Gupta, Suneet
Faa, Gavino
Singh, Inder M.
Chadha, Paramjit S.
Turk, Monika
Johri, Amer M.
Khanna, Narendra N.
Viskovic, Klaudija
Mavrogeni, Sophie
Laird, John R.
Pareek, Gyan
Miner, Martin
Sobel, David W.
Balestrieri, Antonella
Sfikakis, Petros P.
Tsoulfas, George
Protogerou, Athanasios
Misra, Durga Prasanna
Agarwal, Vikas
Kitas, George D.
Kolluri, Raghu
Teji, Jagjit
Al-Maini, Mustafa
Dhanjil, Surinder K.
Sockalingam, Meyypan
Saxena, Ajit
Sharma, Aditya
Rathore, Vijay
Fatemi, Mostafa
Alizad, Azra
Viswanathan, Vijay
Krishnan, Padukode R.
Omerzu, Tomaz
Naidu, Subbaram
Nicolaides, Andrew
Fouda, Mostafa M.
Suri, Jasjit S.
Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review
title Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review
title_full Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review
title_fullStr Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review
title_full_unstemmed Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review
title_short Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review
title_sort cardiovascular risk stratification in diabetic retinopathy via atherosclerotic pathway in covid-19/non-covid-19 frameworks using artificial intelligence paradigm: a narrative review
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140106/
https://www.ncbi.nlm.nih.gov/pubmed/35626389
http://dx.doi.org/10.3390/diagnostics12051234
work_keys_str_mv AT munjralsmiksha cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT maindarkarmahesh cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT ahluwaliapuneet cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT puvvulaanudeep cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT jamthikarankush cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT jujaraytanay cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT surineha cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT paulsudip cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT pathakrajesh cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT sabaluca cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT chalakkalrenohjohnson cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT guptasuneet cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT faagavino cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT singhinderm cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT chadhaparamjits cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT turkmonika cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT johriamerm cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT khannanarendran cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT viskovicklaudija cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT mavrogenisophie cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT lairdjohnr cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT pareekgyan cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT minermartin cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT sobeldavidw cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT balestrieriantonella cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT sfikakispetrosp cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT tsoulfasgeorge cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT protogerouathanasios cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT misradurgaprasanna cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT agarwalvikas cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT kitasgeorged cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT kolluriraghu cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT tejijagjit cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT almainimustafa cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT dhanjilsurinderk cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT sockalingammeyypan cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT saxenaajit cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT sharmaaditya cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT rathorevijay cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT fatemimostafa cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT alizadazra cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT viswanathanvijay cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT krishnanpadukoder cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT omerzutomaz cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT naidusubbaram cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT nicolaidesandrew cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT foudamostafam cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT surijasjits cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview