Cargando…
Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review
Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful in...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140106/ https://www.ncbi.nlm.nih.gov/pubmed/35626389 http://dx.doi.org/10.3390/diagnostics12051234 |
_version_ | 1784715017952690176 |
---|---|
author | Munjral, Smiksha Maindarkar, Mahesh Ahluwalia, Puneet Puvvula, Anudeep Jamthikar, Ankush Jujaray, Tanay Suri, Neha Paul, Sudip Pathak, Rajesh Saba, Luca Chalakkal, Renoh Johnson Gupta, Suneet Faa, Gavino Singh, Inder M. Chadha, Paramjit S. Turk, Monika Johri, Amer M. Khanna, Narendra N. Viskovic, Klaudija Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Kolluri, Raghu Teji, Jagjit Al-Maini, Mustafa Dhanjil, Surinder K. Sockalingam, Meyypan Saxena, Ajit Sharma, Aditya Rathore, Vijay Fatemi, Mostafa Alizad, Azra Viswanathan, Vijay Krishnan, Padukode R. Omerzu, Tomaz Naidu, Subbaram Nicolaides, Andrew Fouda, Mostafa M. Suri, Jasjit S. |
author_facet | Munjral, Smiksha Maindarkar, Mahesh Ahluwalia, Puneet Puvvula, Anudeep Jamthikar, Ankush Jujaray, Tanay Suri, Neha Paul, Sudip Pathak, Rajesh Saba, Luca Chalakkal, Renoh Johnson Gupta, Suneet Faa, Gavino Singh, Inder M. Chadha, Paramjit S. Turk, Monika Johri, Amer M. Khanna, Narendra N. Viskovic, Klaudija Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Kolluri, Raghu Teji, Jagjit Al-Maini, Mustafa Dhanjil, Surinder K. Sockalingam, Meyypan Saxena, Ajit Sharma, Aditya Rathore, Vijay Fatemi, Mostafa Alizad, Azra Viswanathan, Vijay Krishnan, Padukode R. Omerzu, Tomaz Naidu, Subbaram Nicolaides, Andrew Fouda, Mostafa M. Suri, Jasjit S. |
author_sort | Munjral, Smiksha |
collection | PubMed |
description | Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework. |
format | Online Article Text |
id | pubmed-9140106 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91401062022-05-28 Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review Munjral, Smiksha Maindarkar, Mahesh Ahluwalia, Puneet Puvvula, Anudeep Jamthikar, Ankush Jujaray, Tanay Suri, Neha Paul, Sudip Pathak, Rajesh Saba, Luca Chalakkal, Renoh Johnson Gupta, Suneet Faa, Gavino Singh, Inder M. Chadha, Paramjit S. Turk, Monika Johri, Amer M. Khanna, Narendra N. Viskovic, Klaudija Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Kolluri, Raghu Teji, Jagjit Al-Maini, Mustafa Dhanjil, Surinder K. Sockalingam, Meyypan Saxena, Ajit Sharma, Aditya Rathore, Vijay Fatemi, Mostafa Alizad, Azra Viswanathan, Vijay Krishnan, Padukode R. Omerzu, Tomaz Naidu, Subbaram Nicolaides, Andrew Fouda, Mostafa M. Suri, Jasjit S. Diagnostics (Basel) Review Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework. MDPI 2022-05-14 /pmc/articles/PMC9140106/ /pubmed/35626389 http://dx.doi.org/10.3390/diagnostics12051234 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Munjral, Smiksha Maindarkar, Mahesh Ahluwalia, Puneet Puvvula, Anudeep Jamthikar, Ankush Jujaray, Tanay Suri, Neha Paul, Sudip Pathak, Rajesh Saba, Luca Chalakkal, Renoh Johnson Gupta, Suneet Faa, Gavino Singh, Inder M. Chadha, Paramjit S. Turk, Monika Johri, Amer M. Khanna, Narendra N. Viskovic, Klaudija Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Kolluri, Raghu Teji, Jagjit Al-Maini, Mustafa Dhanjil, Surinder K. Sockalingam, Meyypan Saxena, Ajit Sharma, Aditya Rathore, Vijay Fatemi, Mostafa Alizad, Azra Viswanathan, Vijay Krishnan, Padukode R. Omerzu, Tomaz Naidu, Subbaram Nicolaides, Andrew Fouda, Mostafa M. Suri, Jasjit S. Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review |
title | Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review |
title_full | Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review |
title_fullStr | Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review |
title_full_unstemmed | Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review |
title_short | Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review |
title_sort | cardiovascular risk stratification in diabetic retinopathy via atherosclerotic pathway in covid-19/non-covid-19 frameworks using artificial intelligence paradigm: a narrative review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140106/ https://www.ncbi.nlm.nih.gov/pubmed/35626389 http://dx.doi.org/10.3390/diagnostics12051234 |
work_keys_str_mv | AT munjralsmiksha cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT maindarkarmahesh cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT ahluwaliapuneet cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT puvvulaanudeep cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT jamthikarankush cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT jujaraytanay cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT surineha cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT paulsudip cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT pathakrajesh cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT sabaluca cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT chalakkalrenohjohnson cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT guptasuneet cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT faagavino cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT singhinderm cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT chadhaparamjits cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT turkmonika cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT johriamerm cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT khannanarendran cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT viskovicklaudija cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT mavrogenisophie cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT lairdjohnr cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT pareekgyan cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT minermartin cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT sobeldavidw cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT balestrieriantonella cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT sfikakispetrosp cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT tsoulfasgeorge cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT protogerouathanasios cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT misradurgaprasanna cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT agarwalvikas cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT kitasgeorged cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT kolluriraghu cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT tejijagjit cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT almainimustafa cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT dhanjilsurinderk cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT sockalingammeyypan cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT saxenaajit cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT sharmaaditya cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT rathorevijay cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT fatemimostafa cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT alizadazra cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT viswanathanvijay cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT krishnanpadukoder cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT omerzutomaz cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT naidusubbaram cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT nicolaidesandrew cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT foudamostafam cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview AT surijasjits cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview |