Cargando…
Latest Contributions of Genomics to T-Cell Acute Lymphoblastic Leukemia (T-ALL)
SIMPLE SUMMARY: Thanks to the use of high-resolution genetic techniques to detect cryptic aberrations present in T-ALL, we now have a clearer view of the genetic landscape that explains the particular oncogenetic processes taking place in each T-ALL. We also have begun to understand relapse-specific...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140158/ https://www.ncbi.nlm.nih.gov/pubmed/35626077 http://dx.doi.org/10.3390/cancers14102474 |
Sumario: | SIMPLE SUMMARY: Thanks to the use of high-resolution genetic techniques to detect cryptic aberrations present in T-ALL, we now have a clearer view of the genetic landscape that explains the particular oncogenetic processes taking place in each T-ALL. We also have begun to understand relapse-specific mechanisms. This review aims to summarize the latest advances in our knowledge of the genome in T-ALL and highlight the areas where the research on this ALL subtype is progressing, thereby identifying the key issues that need to be addressed in the medium-to-long term to move forward in the applicability of this knowledge into clinics. ABSTRACT: As for many neoplasms, initial genetic data about T-cell acute lymphoblastic leukemia (T-ALL) came from the application of cytogenetics. This information helped identify some recurrent chromosomal alterations in T-ALL at the time of diagnosis, although it was difficult to determine their prognostic impact because of their low incidence in the specific T-ALL cohort analyzed. Genetic knowledge accumulated rapidly following the application of genomic techniques, drawing attention to the importance of using high-resolution genetic techniques to detect cryptic aberrations present in T-ALL, which are not usually detected by cytogenetics. We now have a clearer appreciation of the genetic landscape of the different T-ALL subtypes at diagnosis, explaining the particular oncogenetic processes taking place in each T-ALL, and we have begun to understand relapse-specific mechanisms. This review aims to summarize the latest advances in our knowledge of the genome in T-ALL. We highlight areas where the research in this subtype of ALL is progressing with the aim of identifying key questions that need to be answered in the medium-long term if this knowledge is to be applied in clinics. |
---|