Cargando…
Self-Supervised Learning Methods for Label-Efficient Dental Caries Classification
High annotation costs are a substantial bottleneck in applying deep learning architectures to clinically relevant use cases, substantiating the need for algorithms to learn from unlabeled data. In this work, we propose employing self-supervised methods. To that end, we trained with three self-superv...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140204/ https://www.ncbi.nlm.nih.gov/pubmed/35626392 http://dx.doi.org/10.3390/diagnostics12051237 |