Cargando…
Self-Supervised Learning Methods for Label-Efficient Dental Caries Classification
High annotation costs are a substantial bottleneck in applying deep learning architectures to clinically relevant use cases, substantiating the need for algorithms to learn from unlabeled data. In this work, we propose employing self-supervised methods. To that end, we trained with three self-superv...
Autores principales: | Taleb, Aiham, Rohrer, Csaba, Bergner, Benjamin, De Leon, Guilherme, Rodrigues, Jonas Almeida, Schwendicke, Falk, Lippert, Christoph, Krois, Joachim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140204/ https://www.ncbi.nlm.nih.gov/pubmed/35626392 http://dx.doi.org/10.3390/diagnostics12051237 |
Ejemplares similares
-
Segmentation of Dental Restorations on Panoramic Radiographs Using Deep Learning
por: Rohrer, Csaba, et al.
Publicado: (2022) -
Classification of Dental Radiographs Using Deep Learning
por: Cejudo, Jose E., et al.
Publicado: (2021) -
Cost-effectiveness of Artificial Intelligence as a Decision-Support System Applied to the Detection and Grading of Melanoma, Dental Caries, and Diabetic Retinopathy
por: Gomez Rossi, Jesus, et al.
Publicado: (2022) -
Impact of Noisy Labels on Dental Deep Learning—Calculus Detection on Bitewing Radiographs
por: Büttner, Martha, et al.
Publicado: (2023) -
Impact of Image Context on Deep Learning for Classification of Teeth on Radiographs
por: Krois, Joachim, et al.
Publicado: (2021)