Cargando…
A Comprehensive Performance Analysis of Transfer Learning Optimization in Visual Field Defect Classification
Numerous research have demonstrated that Convolutional Neural Network (CNN) models are capable of classifying visual field (VF) defects with great accuracy. In this study, we evaluated the performance of different pre-trained models (VGG-Net, MobileNet, ResNet, and DenseNet) in classifying VF defect...
Autores principales: | Abu, Masyitah, Zahri, Nik Adilah Hanin, Amir, Amiza, Ismail, Muhammad Izham, Yaakub, Azhany, Anwar, Said Amirul, Ahmad, Muhammad Imran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140208/ https://www.ncbi.nlm.nih.gov/pubmed/35626413 http://dx.doi.org/10.3390/diagnostics12051258 |
Ejemplares similares
-
Analysis of the Effectiveness of Metaheuristic Methods on Bayesian Optimization in the Classification of Visual Field Defects
por: Abu, Masyitah, et al.
Publicado: (2023) -
The classification of skateboarding tricks via transfer learning pipelines
por: Abdullah, Muhammad Amirul, et al.
Publicado: (2021) -
Ocular Cat Bite Injury: A Case Report and Literature Review
por: Abdul Aziz, Ahmad-Marwan, et al.
Publicado: (2022) -
The Clinical Profile of Unilateral and Bilateral Optic Disc Swelling in a Tertiary Center in Northern Malaysia
por: Abdul Aziz, Ahmad-Marwan, et al.
Publicado: (2022) -
Resolution of exudative retinal detachment and regression of retinal macrocyst post-laser in Coats disease
por: Munira, Yusoff, et al.
Publicado: (2013)