Cargando…

Hyper-connectivity between the left motor cortex and prefrontal cortex is associated with the severity of dysfunction of the descending pain modulatory system in fibromyalgia

INTRODUCTION: The association between descending pain modulatory system (DPMS) dysfunction and fibromyalgia has been previously described, but more studies are required on its relationship with aberrant functional connectivity (FC) between the motor and prefrontal cortices. OBJECTIVES: The objective...

Descripción completa

Detalles Bibliográficos
Autores principales: de Oliveira Franco, Álvaro, da Silveira Alves, Camila Fernanda, Vicuña, Paul, Bandeira, Janete, de Aratanha, Maria Adelia, Torres, Iraci L. S., Fregni, Felipe, Caumo, Wolnei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140239/
https://www.ncbi.nlm.nih.gov/pubmed/35622879
http://dx.doi.org/10.1371/journal.pone.0247629
Descripción
Sumario:INTRODUCTION: The association between descending pain modulatory system (DPMS) dysfunction and fibromyalgia has been previously described, but more studies are required on its relationship with aberrant functional connectivity (FC) between the motor and prefrontal cortices. OBJECTIVES: The objective of this cross-sectional observational study was to compare the intra- and interhemispheric FC between the bilateral motor and prefrontal cortices in women with fibromyalgia, comparing responders and nonresponders to the conditioned pain modulation (CPM) test. METHODS: A cross-sectional sample of 37 women (23 responders and 14 nonresponders to the CPM test) with fibromyalgia diagnosed according to the American College of Rheumatology criteria underwent a standardized clinical assessment and an FC analysis using functional near-infrared spectroscopy. DPMS function was inferred through responses to the CPM test, which were induced by hand immersion in cold water (0–1°C). A multivariate analysis of covariance for main effects between responders and nonresponders was conducted using the diagnosis of multiple psychiatric disorders and the use of opioid and nonopioid analgesics as covariates. In addition, we analyzed the interaction between the CPM test response and the presence of multiple psychiatric diagnoses. RESULTS: Nonresponders showed increased FC between the left motor cortex (lMC) and the left prefrontal cortex (lPFC) (t = −2.476, p = 0.01) and right prefrontal cortex (rPFC) (t = −2.363, p = 0.02), even when both were considered as covariates in the regression analysis (lMC–lPFC: β = −0.127, t = −2.425, p = 0.021; lMC–rPFC: β = −0.122, t = −2.222, p = 0.033). Regarding main effects, a significant difference was only observed for lMC–lPFC (p = 0.035). A significant interaction was observed between the psychiatric disorders and nonresponse to the CPM test in lMC−lPFC (β = −0.222, t = −2.275, p = 0.03) and lMC−rPFC (β = −0.211, t = −2.2, p = 0.035). Additionally, a significant interaction was observed between the CPM test and FC in these two region-of-interest combinations, despite the psychiatric diagnoses (lMC−lPFC: β = −0.516, t = −2.447, p = 0.02; lMC−rPFC: β = −0.582, t = −2.805, p = 0.008). CONCLUSIONS: Higher FC between the lMC and the bilateral PFC may be a neural marker of DPMS dysfunction in women with fibromyalgia, although its interplay with psychiatric diagnoses also seems to influence this association.